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Diffuse Scattering from YBa2Cu307 tr Oxide Caused by Magneli-Type Plane Defects
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It is shown that if a periodical faulting of the double-period orthorhombic ( I00) phase in

YBa2Cu307 —~ produces a Magneli series, YBa2Cu307-„/t2, +]), with regular superlattice spots at
[ —,

' ~ 1/2(2n+1), 0,0], the random faulting results in either broadening of the ( —,
' 00) diffraction max-

imum or its splitting into two maxima, ( —, e,0,0), depending on the stoichiometry. The observation of
these eAects is a strong argument in favor of an assumption that this compound is inherently inhomo-

geneous due to the accommodation of nonstoichiometry by means of the formation of interstitial plane
defects.

PACS numbers: 74.70.Vy, 61.14.Hg

As it has been shown in our previous work, ' at low

temperature the nonstoichiometric high-temperature su-

perconducting oxide, YBa2Cu307 q, must either decom-
pose into a mixture of completely ordered phases or
congruently order forming a Magneli homologous series,
YBa2Cu307 „ttq, y ~ & (n 1,2, . . . , ~). The Magneli
phases are long-period layer superstructures formed by
alternation of oxygen-occupied and -vacant (100) planes
separated by a crystal lattice parameter a. Their struc-
ture is specified by a stacking sequence of occupied (0)
and vacant (t-I) layers. The period of the superstructure
is a„=a(2n+ 1). It is determined by a nonstoichiometry
parameter b„n/(2n+ I). ' An example of an alterna-
tion of occupied and vacant planes for a Magneli phase
with n =3 is given by the sequence

. . . DOOQODOaDOCXXXXX)Oa. . . .

~ 2n+1

The series of homologous phases of the type (1) is, in

fact, generated by a periodical distribution of interstitial
plane defects, OO, underlined in (1). The defects are
pairs of completely occupied nearest-neighbor plane lay-
ers separated by segments of the regular basic sequence

(2)

The structure described by the basic sequence (2) is a
homologous double-period ( —,

' 00) phase (n =~) with

the composition YBa2Cu306q. The nth member of a

homologous series with the stacking (1) produces the
dominant diffraction spot at the (n/(2n+1), 0,0) generic
points. The theory ' is an extension of the theory pre-
dicting the structure of the Ti„Oq„—l and Mo„Oq„—]

Magneli series. Electron microscopic and diffraction
data by Chen et al. , Van Tandeloo, Zanderbergen, and
Amelincky, ' herder et al. , and Fleming et al.
confirm the existence of double-period (n =~), triple-
period (n =1), and fivefold-period (n =2) structural

states in nonstoichiometric compounds YBa2Cu307 —j,
where 0.5 & 8'& 0.7.

If decomposition of the nonstoichiometric double-

period ( —,
' 00) Magneli phase with b) —,

' is hindered at
low temperature, the phase cannot reach the completely
ordered state as is required by the third principle of ther-

modynamics. Then the excess oxygen atoms form inter-
stitial plane defects, OO, pairs of nearest (100) planes

fully occupied by oxygen atoms. The defects are
separated by the segments of the double-period phase
with the sequence (2). The defects may form both

periodical (ordered) and random (disordered) distribu-
tions. A periodical repetition of the OO defects gives the

Magneli-type series YBa2Cu307 —„/ ~2„+1~ discussed in

Ref. 1. Random, disordered distributions of the defects
may be expected when the diffusion rate is not sufficient
to provide their ordering. An example of such a random
distribution of the interstitial plane defects formed by
faulting the regular double-period sequence of occupied
and vacant layers, (2), is given by the following stacking
sequence:

. . . OOOO&O~OHODOO. . . .

The purpose of this paper is a theoretical investigation
of the diffuse scattering generated by a random sequence
of the interstitial OO defects in YBa2Cu307 —q. The
comparison between the calculated and observed
diffraction patterns may be an important source of infor-
mation about the structure of the high-temperature su-

perconducting YBa2Cu307 —~ oxides within the non-
stoichiometric range and may help to interpret the avail-
able experimental data.

Intensity of disuse scattering generated by the (1003
interstitial plane defects. —Let us consider a stacking se-

quence of the (100) plane layers separated by the period
a in the YBa2Cu3O7 structure that are either completely
occupied by oxygen atoms or completely vacant. The in-

tensity profile along the [100] direction in reciprocal
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space is described by the equation

I(h) =
i f,„ i g(c(p)„„c(p')„,)

& exp[i 2trh (p —p')], (3)
where c(p)„, is a stochastic variable equal to 1 if a pth
layer is vacant and equal to 0 if it is occupied by oxygen
atoms, q=2xh/a is the nonzero component of the
diffraction vector q=(2x/a)(h, o,o), h is the coordinate
in the reciprocal space along the [100] direction
[0& h & 1, the points h=0 and 1 are the fundamental
reciprocal-lattice points (000) and (100) of the
YBa2Cu307 compound], and fo„ is the scattering factor
of a completely occupied (100) layer; ( ) designates a
spatial averaging along the sample, and summation is
carried out over all planes of the crystal. It follows from
Eq. (3) that the intensity distribution may be calculated
if the correlator (c(p)„„c(p')„,) is known. If the inter-
stitial defects do not form an ordered array, the correla-
tor (c(p)„„c(p')„„)depends on the difference of coordi-
nates of the layers, m p —p', and thus can be presented
as c„,P(m)"", where P(m)"" is a conditional probabili-
ty to have the mth layer vacant if the zeroth layer is cer-
tainly vacant, and c„, is an absolute probability for a
layer to be vacant which is equal to the fraction of the
vacant layers. One may readily see that c„„8',where 8
is the nonstoichiometry parameter in the formula
YBa2Cu307-s. Using (c(p)„„c(p')„„)=c„,P(m)""
and c„„8in (3) gives

I(h) =N
~ f„~ b g P(m)"'exp(i2trhm), (4)

where N is a macroscopically large total number of lay-
ers. Equation (4) reduces the problem of determining
the intensity distribution to the problem of determining
the conditional probabilities, P(m)"".

Probabilities P(m)"'.—Let us assume that plane de-
fects, which are interstitial (100) layers, are randomly
distributed along the direction of axis a. The only
geometrical constraint which we impose on this distribu-
tion is the requirement that neither two vacant (100)
layers nor two faults can be nearest neighbors. This
means that a vacant layer is always followed by a com-
pletely occupied layer, and there are no groups with
more than two completely occupied nearest-neighbor
layers. The above constraint reflects the fact that the
repulsive interaction makes the regular sequence (2) the
most stable one. The faulting of this sequence caused by
introducing extra oxygen planes is an inevitable eA'ect

which appears with deviation of stoichiometry from
8=0.5. The formation of the OO faults separated by
segments of the regular sequence (2) provides the least
possible damage to this regular sequence.

To find the conditional probability P(m)'" we have to
assume that the zeroth plane is vacant, i.e.,

P(o)"-=1. (sa)

next layer (m =1) is certainly occupied, and thus

P(1)"-=o. (sb)
The relations (5) are the boundary conditions at m=0
and 1.

Let us also introduce the conditional probability
P(m)'" to find the mth layer occupied if the zeroth layer
is vacant. Since each layer is either occupied or vacant,

P(m)""+P(m)'" =1. (6)
We also introduce the constant probability a to have a
OO fault in the regular sequence (2). Since the distribu-
tion of faults is assumed random, the probability a is a
constant. The requirement that two vacant layers cannot
be nearest neighbors imposes near-neighbor and next-
near-neighbor correlation on the fault distribution. The
probability P(m)"" can be derived by considering the
balance between the m —2, m —1, and mth layers. The
mth layer can be occupied by oxygen atoms only in two
cases: if the (m —1)th layer is vacant, or if the
(m —2)th layer is vacant but the (m —1)th layer is oc-
cupied.

These two possibilities are described by the following

sequences:

(a) O
m 2

C3

m —
1

0

(b) a
m 2

0
m —

1

O.

P(m)""+P(m —1)""+aP(m—2)""=1 (7)

if the condition (6) is used.
Equation (7) is a nonhomogeneous difference equation

with the boundary conditions (5). It has the following
two solutions:

P(m) ""= + (b b) [ ——' + ( —' —a—) ' ]I 2 2 4

+ (b)+ bg) [——,
' —(-,' —a) '~'] (ga)

P(m)"" +b~ ( —Ja) cos(pm)2+a

The probability that the mth layer is occupied in the se-
quence (a) is equal to the probability P(m —I)""that
the (m —1)th layer is vacant since the first event certain-
ly produces the second one. The probability that the mth
layer is occupied in the sequence (b) is equal to the prob-
ability that the (m —1)th layer is occupied [which is
equal to the probability P(m —2)"" that the (m —2)th
layer is vacant since a vacant layer is certainly followed
by occupied layer] multiplied by the probability a that a
fault appears at the mth layer. The resultant probability
is aP(m —2)"". It follows from the sequences (a) and
(b) that the total probability P(m)'" that the mth layer
is occupied is the sum

P(m)'" P(m —1)""+aP(m—2)"".
This sum can be rewritten as

Since two vacant layers cannot be nearest neighbors, the +b2( —Ja) sin(pm), (gb)
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if a & —,
' and a & —,', respectively, where b~ =(I+a)/

2(2+ a), b2 = (1 —a)/4(2+ a) ( —, —a) ', b I
= (1

+a)/2(2+a), b2 =(1 —a)/4(2+a)(a —
—, ) ', and

p =arctan[(4a —1) '~ ]. It follows from (8) that as
m ~, P(m)"" I/(2+a). On the other hand, the
conditional probability to find a vacant plane at m =
should be equal to the absolute probability of this event,

i.e. , P(~ )""= 1/(2+ a) =c„„=8. The relation 1/
(2+a) =6 and its consequence

a =(1 28)/6

give a direct relation between the nonstoichiometry pa-
rameter b and the probability of faulting, a, in this mod-
el. Using probabilities (8a) and (8b) in Eq. (5) for the
intensity in the cases a~ 4 and a& 4 gives

1 —[ ——,
' +(-,' —a) '"l'

1(h) Nb I fo. I'i (bi —b2)
1 —2 [ ——,

' + ( —,
' —a) '~ ]cos(2xh ) + [ ——,

' + ( —,
' —a) ' ]

1
—[ —~

—(-,' —a) '"]'
+(b)+b2)

1
—2[ ——,

' —( —,
' —a) ' ]cos(2zh)+ [ ——,

' —( —,
' —a) ' ]

J

for a ~ 4 and hWO, h&1, and

(loa)

r

1(h) NB
t f« t

~ b~ (1 —a) 1 +
1+2Jacos(2+h+p)+a I +2@acos(2xh —p)+a

sin(2zh+ p)—b2 a
1+2Ja cos(2zh+ p) + a

sin(2mb —P)

1+2Ja cos(2xh —P) +a
(lob)

for a & 4 and h ~0, h &1. The intensity distributions
(10) between the fundamental reciprocal-lattice points
describe a diffuse scattering caused by faulting of the
regular periodic sequence (2).

Discussion. —The intensity profile associated with a
"disordered" distribution of the interstitial defects is
given by Eqs. (10). Typical profiles at difTerent
stoichiometries are shown in Fig. 1. The calculated
profiles have the following important characteristics: (i)
If a (1 —28)/b & —„' (b & 0.444), Eq. (10a) describes
the dilfuse maxima at the ( —, 00) point. The width of
the maximum is of the order of reciprocal average dis-
tance between faults. It increases when the stoichiom-
etry deviates from 6 0.5. (ii) If a (1 —2b')/b& —,

'

(6&0.444), the diff'raction pattern is described by Eq.
(10b). When 6 & 0.425, the maximum ( —,

' 00) splits into
two maxima (2 + e, 0,0) (h~,„=—,

' ~ e), where e in-

creases with the decrease of 8. The shift of the maxima
in the diffraction pattern is described by the plot of h

vs 6 calculated from Eq. (10b) and shown in Fig. 2. It is

interesting that the positions of the shifted maxima are
very close to the positions h,„n/(2n+1), for
n =1,2, 3, predicted in Ref. 1 for the superlattice maxima
of the completely ordered Magneli phases (compare

3 5 7 values with the values h,„=0.33,
0.39,0.47, respectively, following from the plot on Fig.
2).

These calculated results are in agreement with the
electron diffraction data of Beyers et al. , who actually
observed YBaqCu307 b the diffuse maxima rather than
the well-defined superlattice diffraction spots expected
for the completely ordered Magneli-type structures. The
observed positions of the maxima are close to the

( 2 E„,O, O) positions of the superlattice spots from the
nth Magneli phase, where e„=]/2(2n+ I), and there-
fore are close to the positions predicted above for the
diA'use maxima (see Fig. 2).
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FIG. l. Calculated intensity profiles associated with random
faulting of the ideal double-period YBa2Cu306 5 structure
at different stoichiometries: (1) b =0.435 (a =0.30), (2)
b 0.408 (a 0.45), (3) 8 0.363 (a =0.75).
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FIG. 2. Calculated positions of the diffuse maxima (h „00)
caused by the random faulting of the regular double-period
structure vs nonstoichiometry parameter, 8.

Equations (10) also predict broadening of the ( —,
' 00)-

type diffraction maxima when the stoichiometry, 8', devi-
ates from 8 0.5. The broadening is caused by the finite
size of the optical coherency domains whose average size
is equal to the average distance between faults that
break the optical coherency. The typical broadening is
then of the order of the reciprocal average distance be-
tween faults. The average distance between faults in the
relevant model is

2a x —=2a x1

a 1 —28
It decreases when the stoichiometry parameter 8' deviates
from 0.5. Thus, the diffraction maxima become broader.
The broadening of the ( —,

' 00)-type diffraction maxima
caused by deviation of the stoichiometry from 8' 0.5
was observed by You, Moodenbaugh, Suenaga, and Taf-
to. ' They concluded that the observed broadening is

reasonably well described if the assumption is made that
the scattering is caused by a set of optically incoherent
unit cells of the nth Magneli phase [the size of the cells
is equal to the Magneli-phase period a„a(2n+I)).
The number n was related to the stoichiometry 8 through
the equation b„n/(2n+I). It is interesting that this
conclusion is actually identical to the conclusions made
above for the random faulting model ~ The agreement
between the observed diffraction effects and the predic-
tions of the theory allows us to conclude that a deviation
from the ideal stoichiometry of a primary ordered phase
is accommodated not by a change in the occupation of
the sublattices but by faulting of the crystal lattice
structure caused by the appearance of interstitial plane
defects. Nonstoichiometric YBa2Cu307 —s is then in
herently microscopically heterogeneous due to the mac-
roscopic amount of interstitial plane defects induced by
the nonstoichiometry. If this is typical, it may be irnpor-

tant for understanding the magnetic pinning properties
of the superconducting nonstoichiometric 1:2:3 com-
pound. The faulting mechanism seems to be the main
low-temperature mechanism of accommodating the non-

stoichiometry not only in YBa2Cu307 —& oxides but also
in other layer superstructures.

The random faulting model discussed above is applic-
able within the stoichiometry range of the Magneli
homologous structures, —,

' &b'&
2 (0&a&1), where

the stoichiometry limits, 3 and 2, are the end values of
the Magneli stoichiometry series b„n/(2n+ 1) at n 1

and , respectively. The results concerning the
diffraction effects in the randomly faulted double-period
Magneli structure with n are directly applicable to
other Magneli homologous series as well. For example,
they are fully applicable to the titanium oxides within
the stoichiometry range of the Magneli Ti„02„—&

series.
The random faulting of the routile structure, TiOq (it is

also a double-period Magneli phase with n ee) within
this range should also result in broadening and shift of
the corresponding (212)«„t,1, superlattice reflection.
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