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Pulses and Fronts in the Complex Ginzburg-Landau Equation near a Subcritical Bifurcation

W. van Saarloos and P. C. Hohenberg
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(Received 30 October 1989)

Uniformly translating solutions of the one-dimensional complex Ginzburg-Landau equation are stud-
ied near a subcritical bifurcation. Two classes of solutions are singled out since they are often produced
starting from localized initial conditions: moving fronts and stationary pulses. A particular exact ana-
lytic front solution is found, which is conjectured to control the relative stability of pulses and fronts.
Numerical solutions of the Ginzburg-Landau equation confirm the predictions based on this conjecture.

PACS numbers: 47.10.+g, 05.45.+b, 47.20.Ky, 47.25.Qv

Spatially extended nonequilibrium systems often show

coherent structures formed from the spatial juxtaposition
of diff'erent types of solutions, particularly near subcriti-
cal bifurcations where the diff'erent solutions are individ-

ually stable. Examples are moving fronts formed when a
stable state invades an unstable one and, in the bistable
case, pulses formed by bubbles of one state embedded in

the other, or fronts between stable states. When the dy-
namics of the system is characterized by a minimizing
potential (Lyapunov function) the behavior of such
structures can often be inferred by comparing the values
of the potential for each of the states, but in the opposite
case when no Lyapunov functional exists the situation is
much more complicated and there exists a rich variety of
diferent structures with often surprising behavior. For
example, pulses and fronts appear in binary-fluid convec-
tion, ' plane Poiseuille flow, and Taylor-Couette flow

with counter-rotating cylinders, as well as in numerical
simulations of model systems. ' Depending on parame-
ter values these coherent structures are found to vary ei-
ther periodically or chaotically in time, and to have spa-
tial envelopes which may be stationary or uniformly
mo~ing, or may undergo chaotic motion. The present
work summarizes results of a comprehensive analytic
and numerical study of a simple equation displaying all

of the above types of behavior: the one-dimensional com-
plex Ginzburg-Landau (GL) equation near a subcritical
bifurcation.

In general, it is found that for given parameter values
a multiplicity of front and pulse solutions exists. Our
aim is to understand this multiplicity and especially to
elucidate the ensuing selection problem: Which solution
will be reached starting from specified initial conditions?
For the real equation, as well as for other cases with a
Lyapunov function, this selection problem only arises
above the bifurcation point (e & 0), where earlier work
has shown that the form of the selected front is correctly
predicted by simple criteria which go by the name
"linear and nonlinear marginal stability" [see Figs. 1(a)
and 1(b)]. Our objective is to generalize these criteria to
the complex case and to the bistable regime, t. &0. In
addition to moving fronts, the complex equation has been
shown numerically to possess both periodic and chaotic
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FIG. l. (a), (c) Bifurcation diagrams and (b), (d) front ve-

locity as a function of control parameter. (a) and (b) refer to
the real GL equation [c, 0 in (1)], which is bistable in the
range t.o & t.' & 0. Dashed lines refer to unstable solutions, solid
lines to stable ones. For e & e~

—
—,', the selected front [thick

line in (a)] has velocity v & 0 which is larger than the velocity
v given by linear marginal stability [dot-dashed line in (b)].
For e e —, (not shown) v =v and for c & e the linear
front is selected. For c & c~, v' & 0, the
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a0 one [thick line in (a)]. (c) and (d) refer to the

complex case [c~ —0. 1, c3 0.2, cq=0. 15 in (1)], for which
the front with velocity v and wave vector qz is selected in the
range e3 & e & e . Solid circles are results of numerical solu-
tion of (I). For c & c, v* & v, and we have linear marginal
stability (solid triangles), whereas for e & t. 3, v & 0 and stable
pulses, denoted by crosses, are found for ez & e& e3. For e & e2

the
~
A

~
0 state invades all A &0 states.

pulse solutions for certain parameter values in the bi-
stable regime. Our main result is the discovery of an ex-
act "selected" front solution which allows us to predict
analytically whether a pulse or a front will be preferred,
and in the latter case what the front velocity will be.

The one-dimensional complex GL equation may, by a
suitable choice of units, be written in the general form

e,~ =~~+(I+fc, )a„'~

+ (I + I'c ) ( A ) 3 —(I —l'cs)
~
A

~
3, (1)
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where A(x, t) is complex, e, c~, c3,cs are real parameters,
and we have chosen a frame of reference where there is

no al„A term and no imaginary linear term icoA. An im-

portant class of solutions are the uniformly translating
profiles

A(x, t) =e '"'A(x vt—) =e '"'a(()e""',

where ( =x —vt. Upon introducing the quantities

q =Std, tr =a tlta,

Eq. (1) becomes (a'=Bta, etc.)

a' = xa, tr' =K, q
' =Q,

with

K = t. c~ L'& c~&-,q+q2 K2

—(I+c() '[(I+c~c3)a —(1 —c~cs)a ],

(2)

(3)

(4)

Q =c
~
e —to+ c ~F tr —

Fq
—2 trq

+ (c] c3)a —(c~ +cs)a

and a=a(1+c~ ) ' for any parameter a. The three-
variable dynamical system (4) has fixed points corre-

sponding to uniformly translating solutions of the GL
equation (1) which are periodic in space and time.
There are two classes of such fixed points, the finite-

amplitude "nonlinear" ones (N) with ajve0, qze0, and

trz =0, and "linear" ones (L) with aL =0, qLAO, and

xL~O. The dependence of a~ on t. for the nonlinear
solution with qua =0 is shown in Fig. 1(a) for the real
equation and in Fig. 1(c) for the complex one. In both
cases there exists in addition a band of solutions

aw(qtv, e)=a&(0, e qk) for any q—~, but the qN&0
states turn out to be dynamically relevant only for the
complex equation. Expressions for ajv, qjv, qL, trL are
readily obtained by solving the fixed-point equations
a'=tr'=q'=0. Besides the fixed points N and L there
exist so-called "coherent structures" which are uniformly
translating solutions of (1) with spatially varying en-

velopes. These correspond to (heteroclinic) trajectories
of (4) joining diferent fixed points. Let us denote by
L+ the linear fixed-point solutions with tcL&&0, respec-
tively; for increasing g trajectories near these points cor-
respond to growth (L+) or decay (L —) of the amplitude
a away from zero. Then we can distinguish three types
of coherent structures: pulses going from L+ to L
fronts going from N to L — (or L+ to N); and domain
walls which join different N fixed points (we shall not

discuss domain walls further here).
As is well known, the condition for existence of a

heteroclinic trajectory is that the stable and unstable
manifolds of the fixed points in question should join up.
It is thus possible to determine the multiplicity of the
aforementioned coherent structures by studying the
linear stability of the fixed points in the dynamics of Eq.
(4). It should be emphasized, of course, that such argu-

ments do not prove the existence or nonexistence of solu-

tions, only their multiplicity, i.e., the likelihood of finding
a nearby solution if one is known to exist. The stability
analysis of the fixed points of (4) leads to the following
predictions: For fixed values' of e and the coefficients

c;, there is a family of fronts with frequencies tof(v) and

a continuum of velocities; this family is associated with

one of the nonlinear fixed points (N~, say). From this
family we expect to find stationary fronts to, f Nf(v =0)
at generic points in parameter space. In addition, there
is a discrete set of fronts with specified velocity v t and

frequency tv, associated with the other nonlinear fixed

point Nq. One member of this discrete set will turn out
to be the "selected front" mentioned above. For e(0
and fixed c;, one also finds a discrete set of moving pulse
solutions with specified velocity v~ and frequency to~,

plus a symmetric stationary pulse (v,~ =0, tv, ~) which ex-
ists for generic parameter values.

We have constructed particular solutions of (4) repre-
senting exact fronts and pulses. The front solution is

analogous to the one found earlier for the real equation.
Its form is''

K' = lcL (1 a /a~ ),
q =qL+ (q/v

—qL)a /atv,

(sa)

(Sb)

the six constants co, v, K'L, qL, qz, az being determined by
inserting (5) into (4). It can be showns that this solu-

tion belongs to the discrete set v, to, rather than to the
family cvf(v). The stationary pulse is a generalization of
the solution of Hocking and Stewartson '2 which here
takes the form

tc = K'L (1 —a /an ) ( I +dna /ao )

q =d)tr.

(6a)

(6b)

When (6) is inserted into (4) one finds six equations for
the five real constants trL, ao & 0, do & —1, d ~, and to, so
that the Ansatz (6) is only valid in a codimension-one
subspace of the parameter space (c~,c3,cs), though as
mentioned above, we expect stationary pulses to exist
throughout the parameter space. From (5) and (6) it is

easy to find analytic expressions for the pulse and front
shapes a(g), q(g). In contrast to the front solution ob-
tained by the Ansatz (5), it turns out that the pulse solu-
tion given by (6) is never stable.

The most interesting question about fronts and pulses
is their dynamical behavior as solutions of Eq. (1),
namely their stability and the ease with which they can
be reached from given initial conditions (their basin of
attraction). Although we cannot claim to have fully
solved this difficult selection problem, we have general-
ized the rules developed earlier for the real equation
and have formulated a set of conjectures which can be
tested against numerical solutions of Eq. (1). The basic
idea is that the selected front v, co discussed above is
the entity which controls the behavior of the system.
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Moreover, we conjecture that the selected front is pre-
cisely the one obtained from the Ansatz (5), so that we

can calculate v analytically for given parameter values.
Whenever a solution of (5) is found with v & 0, a local-
ized initial condition will lead to a positive front (N in-

vades L) given by that solution, and pulses will be unsta-
ble. If the Ã state thus created is Benjamin-Feir unsta-
ble' (as can be ascertained analytically' from the
values of ajv, qjv), the front will not translate uniformly
but its time-averaged velocity is expected to be close to
v . When v & 0, on the other hand, or when no solution
of (5) exists, the outcome is somewhat more dependent
on initial conditions, but there is usually a significant pa-
rameter range where stable stationary pulses are found.
Alternatively, a localized initial condition (even of large
amplitude) might decay to zero, or lead to a chaotic
pulse.

Figure 1 illustrates the diA'erent regimes for fixed c; as
a function of e. For e&0 and c;&0 [Figs. 1(c) and
1(d)] the selected-front velocity is max(v, v ), where
v* is given by the linear-marginal-stability criterion '
and v is obtained from (5). Note that the transition
point e=e where v =v, which was found to be
e =0.75 in the real case, now depends on the coefficients
c;. For t. &0 the point e=t.

~

= —['6, which marks the
transition between the selected front v and the A =0
solution in the real case [Fig. 1(a)], now opens up into a
finite region ez & e & ei, in which stable pulses exist [Fig.
1(c)]. Although both ez and e3 depend on the c;, it is

only e3 that we can calculate analytically, from the con-
dition v (e3) =0 [see Fig. 1(d)]. Interestingly, for a
large range of values of the c;, we find e3=0, in which
case positive fronts do not propagate at all below thresh-
old, in contrast to the real equation.

We have tested this surprisingly simple picture by
direct numerical integration of Eq. (1). The solid circles
in Figs. 1(c) and 1(d) show the wave vector qjv and ve-

locity v of pulses found for a particular choice of c; by
starting from localized initial conditions with large
enough amplitudes in the range eq & e & e, in excellent
agreement with the prediction of the Ansatz (5). The
front velocity obtained for t. & t. is shown by the solid
triangles and follows from the linear-marginal-stability
criterion. ' In the range e2(t. & t. 3 stable pulses were
obtained, as indicated by the crosses. The exact pulse
solution (6) can be shown to exist only for e& e&, so it

is always unstable to front generation.
Another way to present our results is to fix e and plot

the dependence of velocity on the c;, e.g. , the variation
with c3 at fixed c~ and c5 as in Fig. 2. For e &0 [Fig.
2(a)], the Ansalz (5) leads to a velocity v (solid line)
which exists over a finite band of c3, corresponding to the
band of existence of the wave vector —( —,

' +e)' &qjv
& (4 +e)' . A numerical simulation of Eq. (1) in the
range c3 & c3 =1.22, where v & 0, yields the solid cir-
cles which are again in excellent agreement with the an-
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FIG. 2. Front velocity vs parameter c3 of the GL equation,
for fixed c~ -1, cq- —0.8, and (a) e= —0.03, (b) e +0.03.
The velocity v obtained from the selected-front Ansatz (5) is

shown by the solid line, and the linear-marginal-stability ve-

locity v is given by the dot-dashed line. For c3&c3 "' the
nonlinear state az, q+ produced by (5) is Benjamin-Feir unsta-
ble. The symbols represent numerical solutions of (1) and have

the same meaning as in Fig. 1. The open circles are time-
averaged velocities of chaotic solutions.

alytic prediction. For ci & cP, where v
t & 0 (L invades

N), we find that stationary pulses are stable as indicated

by the crosses, whereas they are unstable for c3 & c3(0)

For e&0, Fig. 2(b), the numerical calculation yields a
positive front propagating with a velocity given by
max(v, v ), as indicated by the circles and triangles.
At the edges of the band of existence of v, e.g. , for
c3 + c3 in Fig. 2, the nonlinear state az, qz is
Benjamin-Feir (BF) unstable' and the moving-front
solution found numerically is also not strictly periodic,
the more so as c3 goes further below c3 ". The tirne-

averaged velocity, nevertheless, initially follows v t rather
closely, as indicated by the open circles, even through the
fluctuations about the average velocity can be large.

Our predictions are also in accord with numerical
work of previous authors: (i) The parameter values
chosen by Thual and Fauve correspond to c] =0, c3
=0.333, c5 =0.364, and —0.138 ~ e & —0.031, for
which the Ansatz (5) has no solution. For slightly small-
er values of c~, however, solutions with v & 0 do appear,
so it is not surprising that stable pulses were found by
these authors. (ii) The calculation in Fig. 8 of Deissleri
corresponds to c] = —2.5, c3= —0.5, c5= —2, and e
= —0.125, for which (5) also has no solution. More-
over, the solution is relatively far away in parameter
space, and all nonlinear states aiv, qiv are BF unstable. '

In this case Deissler found a chaotic pulse in his simula-
tion, though we have also obtained stable stationary
pulses for these parameters, starting from more localized
initial conditions.

Quantitative applications of our results to binary-fluid
convection or plane Poiseuille flow must await a more
detailed determination of the validity of the GL equa-
tion. At this stage it is already clear, however, that our
work is unlikely to explain directly the experimental ob-
servations by Kolodner, Bensimon, and Surko' of sta-
tionary front pairs in binary-fluid convection. These

751



VOLUME 64, NUMBER 7 PHYSICAL REVIEW LETTERS 12 FEBRUARY 1990

fronts were found to have arbitrary separation for a

range of e values. In the GL equation (1), a pair of sta-
tionary fronts can be obtained' from a stationary pulse

by requiring the width of the pulse to diverge, but when
this condition is approximately satisfied the distance be-
tween the two fronts will be a axed function of the pa-
rameters {e,c,j, in seeming contradiction to the experi-
mental findings. ' Another aspect of our work which lim-

its its direct applicability to binary-fluid convection, even
to explain the observation' of stationary pulses, is our
consideration of only one direction of propagation of
waves in (1), and the consequent neglect of the group-
velocity term s |)„A (if right- and left-propagating waves
are present this term cannot be transformed away). In
our model the stationary pulses are at rest in the frame
moving with velocity s; whether the more general model
will have pulses at rest in the laboratory frame remains
to be seen. For plane Poiseuille flow the observed ex-
istence of turbulent bursts is qualitatively consistent with
predictions based on Eq. (1), as noted by Deissler. '
However, his estimates' of convective versus absolute
instability near onset, which are based on v*, may have
to be revised since fronts may propagate faster than v*
over an appreciable parameter range.

In conclusion, we have presented some conjectures
concerning the behavior of pulses and fronts in the com-
plex GL equation (1), and verified their predictions by
direct simulation. An important question which remains
to be elucidated is whether the simple Ansatz (5) pro-
duces the selected front t, in all cases, and why it
succeeds or fails when it does. It seems likely that the
perturbative methods' discussed by Fauve and Thual'
and by Hakim, Jakobsen, and Pomeau, ' could shed
light on these questions.

The authors thank Y. Pomeau and S. Fauve for com-
municating their work prior to publication. P.C.H. ac-
knowledges the hospitality of the Aspen Center for Phys-
1cs.

Note added. —The recent results of Brand and
Deissler on pulse interactions in two coupled GL equa-
tions have a natural explanation in terms of our work.
When the two pulses do not overlap the system studied

by these authors is equivalent to two uncoupled versions
of Eq. (1), which admit discrete pulse solutions moving
with the group velocity (the equivalent of our stationary
pulses). It is thus to be expected that after a collision
the pulses will either emerge unchanged, or disappear, or
form another discrete solution. We are indebted to M.
C. Cross for bringing this point to our attention.
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