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Nonperturbative Solution of the Ising Model on a Random Surface
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The two-matrix-model representation of the Ising model on a random surface is solved exactly to all
orders in the genus expansion. The partition function obeys a fourth-order nonlinear differential equa-
tion as a function of the string coupling constant. This equation differs from that derived for the k 3
multicritical one-matrix model, thus disproving that this model describes the Ising model. A similar

equation is derived for the Yang-Lee edge singularity on a random surface, and is shown to agree with

the k 3 multicritical one-matrix model.

PACS numbers: 11.17.+y, 04.60.+n

Recently dramatic progress has been made in the
study of random surfaces or two-dimensional gravity. '

The one-matrix model, which yields a discretized
definition of the sum over random two-dimensional sur-
faces, has been solved nonperturbatively. This model,
originally developed to reproduce the genus expansion of
the partition function for two-dimensional gravity, turns
out to yield a differential equation that sums the expan-
sion. In the case of pure two-dimensional gravity, with
no matter coupled, it was shown that the specific heat
f(t) satisfies the Painleve equation f —

—,
' f t, where t

is essentially the inverse string coupling constant. This is

of great interest since this model provides the simplest
example of string theory, albeit one with a finite number
of degrees of freedom, where nonperturbative methods
are sorely lacking.

In this work it was also claimed that one could study
with the same techniques the complete series of unitary
theories of conformally invariant matter coupled to two-
dimensional gravity, by studying the multicritical points
of the one-matrix model. This claim was based on
Kazakov's discovery of these multicritical points and his
argument that they described the unitary series. This
argument was largely based on the coincidence that the
string anomalous dimension calculated for the kth mul-
ticritical point was given by y, —1/k, in agreement
with the Knizhnik-Polyakov-Zamolodchikov (KPZ)
calculation of y, for the unitary conformal theory with
central charge c=1 —6/k(k+1). With this correspon-
dence one could derive differential equations for the
specific heat of these models. For example, in the case of
k=3, which was identified with the Ising model on a
random surface, the specific heat obeyed the equation

However, recently some doubts as to the validity of
this identification have appeared. They include the fol-
lowing.

(1) The power-series expansion of F(t) in inverse
powers of t +' yields the partition function on surfaces
of given genus. These must be positive if the theory is

unitary. We have used the differential equations to cal-
culate these to high order, with the result that for k & 2
they eventually, for some genus, turn negative. In par-
ticular for k 3, the purported Ising model, this occurs
first at genus 6. This is a strong argument that the mul-
ticritical points of the one-matrix model are nonunitary,
and certainly cannot coincide with the unitary series cou-
pled to two-dimensional gravity. This is perhaps not too
surprising given that the Kazakov multicritical points re-
quire triangulations with negative weights. Furthermore,
the value of y„or c for that matter, by itself cannot
determine the model uniquely.

(2) Staudacher has proposed identifying the k 3
multicritical point of the one-matrix model with the
Yang-Lee edge singularity on a random surface. He ar-
gues, for surfaces with spherical topology, that the
nonunitary theory of an Ising model above its critical
temperature in a purely imaginary magnetic field coin-
cides, in the limit of infinite temperature, with a hard-
dimer problem that can be mapped onto a p -field

theory. The critical behavior of this theory is precisely
that of Kazakov's k 3 multicritical point. This suggests
that the correct identification of the k 3 multicritical
theory of the Yang-Lee edge singularity coupled to grav-
ity, for which Cardy has argued, c

(3) Witten has recently reproduced the correlation
functions, calculated for these models in Ref. 1, in terms
of a topological theory of gravity. From the point of
view of this formulation there is no reason for unitarity
at all.

(4) Polyakov has argued that these models can be
identified with the nonunitary (for k ) 2), (q =2,
p=2k —1), minimal model coupled to two-dimensional
gravity, and that the KPZ calculation of y, fails due to
the presence of negative-dimension operators. ' A cor-
rected calculation yields y, = —1/k in accord with the
one-matrix model.

It is therefore important to try to directly solve the Is-
ing model to all orders and compare with the k =3 mul-
ticritical point. In this Letter this will be done with the
result that, indeed, the two are not equivalent for vanish-
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ing magnetic field, but coincide for imaginary field at the
Yang-Lee singularity.

The Ising model on a random surface with the topolo-

gy of a sphere was formulated by Bershadsky and Mig-
dal, " solved in the case of zero field by Kazakov, ' and
in the case of an external magnetic field by Boulatov and
Kazakov. ' Here we shall extend these results to all or-
ders, summing over surface with arbitrary topology.

Let us recall the formulation of the two-matrix prob-
lem that generates Ising spins in an external magnetic
field H on a random surface. Consider a model of two
N-by-N Hermitian matrices I and Y, with the following
partition function:

Z~ = DLDYe ~w(x, v)
J

8' were of higher order, so would be the recursion rela-
tion. This complicates the exploration of the multicriti-
cal points of this model. ) If the magnetic field vanishes,
then P+ =P, R+ =R, S+ =S, otherwise they
differ. Equations for the coefficients P —,R —,S — can
easily be derived using properties of the orthogonal poly-
nomials; for example,

dxdye s "' P, (y) =0,dP„+ i(x)
4 dx

-w(. )d„dx dye ~ '"" [P+(x) —x"]P (y) =O.

One finds

cR„=y„[1+2ge (R„+~
+R„—+R„=~ )],

=„gdx; dy; a~(x;)ag(y;)e (2) cyn+ = Rn +2ge
2P

dxdye P "'~ P,+(x)P (y) =h„8„ (3)

These are useful since the Van der Monde determinants
hz can be expanded as products of these polynomials,
the integrals performed and Z~ can be expressed as
g;h;. ' To solve the model we need to calculate the h;.

From the definition of the orthogonal polynomials it
follows that they obey a three-term recursion relation

xP, (x) =P„(x)+R, P„= (x)+S, P,= (x). (4)

(Note that the fact that this recursion relation has three
terms is a consequence of the fact that 8' is quartic. If

W(X, Y) =Tr[(X + Y —2cXY) —g(e X +e Y )],
where d~(x;) g;~~-~(x; —xj) . It is not difficult to
show that the free energy of this model F=lnZ~ is equal
to a sum over random surfaces with Ising spins attached.
In the limit of large N only planar graphs survive in the

g expansion, each vertex corresponds to an X (or Y),
which represents an up spin (or a down spin). The
equivalence of the two models can easily be established.
Keeping higher-order terms in (1/N) " can reproduce
the Ising model on a random surface with h handles.

This model was solved as N ~, i.e., the Ising model
on a random sphere, by the method of orthogonal poly-
nomials, which was first exploited by Mehta to solve the
two-matrix problem. ' One defines orthogonal polyno-
mials P„+(x) and P„(y) with respect to the measure in
(2)

x [(S„+2+S,+i+S„—)

+R„(R„+,+—R„+R„=~—)],
+ +HcSn+ ] 2ge yn+ [ynyn —

[

where we have defined y„=h„/h„—~. We must solve
these equations for y„, from which we can calculate
FJv =Q„-)(N —n)lny„.

In the large-N limit we can replace n/P by a continu-
ous variable x, and replace y„y(x), R,— (x), S„+~

S —(x) (note the shift by one unit). The free energy
is then given by Fv(P) txP fodx(X —x)lny(x). The
scaling laws arise from the singular behavior of y(x)
near the point x =1, when P/N equals its critical value 1.
If we were to neglect the difference between, say, y„and
y„+~, we would then derive equations that would yield
the model on the sphere. However, as in the treatment
of the one-matrix model, we should keep the corrections
of order 1/N in the expansion of

2

y. +) -y(x)+ —y'(x)+ —— y (x)1, 1 1

P 2 P
3 4

+—— y (x)+ — y (x)+1 1 nr 1 1 (4)
6 p 24 P

if we are interested in higher-genus surfaces. (It will not
be necessary to include terms with higher than four
derivatives. ) They will be enhanced by inverse powers of
P/N —1, which goes to zero at the critical point of the
theory.

So we expand

R =y 1+6g — R —+ R —"+ R-
3P 36P

cS =2ge —
y y

1,2+ 1 „+ 1 (4)
2y 2yy + 4yy

cy+ —=R —+6 e — S —+ 2S — + 4S — +R — R —+
2

R —"+ 4R—
2 3P' 36P' 3P' 36P4

(6)
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(8)

The disagreement of the coefficients of (7) and (1)
definitely establishes that the Ising model differs from
the k=3 multicritical one-matrix model. For example,
F[gags 20 t

+ + ] p In (t )+, whereas F/( 3
= —,', t +' + —,', ln(t)+ . Does this shift of the
coefficients help improve the positivity of the partition
function? We have calculated, using the recursion rela-
tion that follows from (7) or equivalently (8), the expan-
sion of f(t) in inverse powers of t't, which is the string
coupling constant. One finds that all the terms are posi-
tive as long as the coefficient of f( 3, in (8), is smaller

We must now adjust the parmeters g and c so that the
surface and the spins become critical, i.e., that the renor-
malized cosmological constant vanish and the spins are
not frozen (massive). In general, for arbitrary H it is
cumbersome to solve for these critical values. However,
in two cases, it is relatively easy: that of vanishing mag-
netic field and that of H =in/2

First, the case of vanishing field, where (6) reduces to
three coupled differential equations. In this case

5 1

ggpjijgg) 7p and cgp(QQQJ 4 In other words, for these
critical values, we find that as x 1, y(x) & (1 f), —
R —', (1 —r), 5 —

—,', (1 —s), and that as x 1, y
vanishes according to —,

'
y =1 —x. This yields in the

spherical limit F-t +', where we have defined the
scaling variable t = (1 —x)P t, corresponding to a string
anaomalous dimension, y, = —

—,
' .

It is now a straightforward matter to examine (6) in

the vicinity of x-1. These three equations can be re-
duced to a single equation for f(t) F(t):

f' 'ff" '--(f')'-+ ' f-"'=t— (7)

We have rescaled t ( —', )'t t, f ( —', ) t f, F F, so
as to set the coefficient of f equal to 1. This corre-
sponds to a renormalization of the string coupling. If we
allow ourselves to rescale the free energy as well we

could rewrite this equation in a form similar to (1), since
given the structure of the differential equation one can
always choose the coefficient of f and the coefficient of

ff" to be —1, as

f3 ff" ~ (y)2+ 2 f(4) t.

than —,', . In the case of the Ising model the coefficient is

27 + I 2 so the series is positive; in the case of the k =3
one-matrix model, ,

'& & —,'& so the series becomes nega-
tive at high genus.

The fact that the two equations for the specific heat in

the two models differ so slightly suggests that the k=3
multicritical one-matrix model is some kind of small,
nonunitary, perturbation of the Ising model. This is in

accord with Staudacher's contention that the k 3 mul-

ticritical one-matrix model coincides with the hard-
dimer problem on a random surface, which coincides
with the Ising model for H iz/2 In. this case the criti-
cal value of c is equal to 1, and the critical value of g
vanishes. This means, in Ising-model language, that the
temperature is infinite. Let us calculate the partition
function to all orders for this case.

The H iz/2 case is somewhat tricky, since g„;„„~ 0.
We therefore choose to shift H slightly, taking
H i(tt/2 —e) and keeping e finite till the end of the cal-
culation. Then one finds that g„;„„~ —+» e, and that
as x 1, y (x) (15/4e ) (1 —f), S — (15/16e')
xe ~H(1 —s —). We now have to reduce the six equa-
tions in (6), near x —1 and e-0, to an equation for
f(x). This is straightforward, although tedious, finally

giving in terms of the scaling variable (no rescaling is

necessary here) f ff"—
—,
' (—f') + —,', f t. This is

in precise agreement with Eq. (1), for the k 3 mul-
ticritical one-matrix model. This result confirms
Staudacher's conjecture to all orders in the genus expan-
sion.

In the case of the standard Ising model on a regular
lattice there is only one critical theory for nonvanishing
(imaginary) magnetic field —the Yang-Lee edge singu-
larity. ' As soon as one turns on the magnetic field the
system jumps from one to the other. We would expect
that this should be the case for the matrix-model repre-
sentation of Ising spins coupled to gravity. To verify this
we solved, using the symbolic-computation package
MATHEMATICA, Eqs. (6) for arbitrary field H. We ob-
tained the following parametric solution that interpolates
between the Ising model (a =0) and the Yang-Lee edge
singularity at infinite temperature, the hard-dimer model
(a -n/2),

4 H D*;, 160cos (a) D 5 2;,+ 10+ 2;, 3(1 f) I
D I—

ID I

'
D

'
9ID I

80cos (a)
(9)

3 (3 —2f+z) + (3f f")
+ (1+3z)—(3f —2f ' )

40(1+z) 20( —1+z ) 20( —1+z)
—24(1+7z+4z )ff"+(3+18z+11z )f

240( —1+z) (1+z)
+ o ~ ~ (10)

where z =e ' . The remaining functions R,S —are given by similar expressions, which directly follow from (6) and
the above form of R . All these functions depend continuously on a, so that at first glance the universality of the criti-
cal behavior is violated even at the perturbative level. This could occur only if there was a marginal operator, as in the
Thirring or Baxter models. However, there is no such operator in the KPZ list of operators for either model. Hence,
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the a dependence should disappear from the observables.
After tedious computation we confirmed this expecta-
tion. Indeed, it turned out that specific heat satisfies the
k=3 multicritical equation for the Ising model at the
critical point for arbitrary nonvanishing imaginary mag-
netic field.

As a 0, z 1 (i.e., H 0) there are singularities
in all the above expressions; however, the equation for f
remains the same for any finite H Pr.ecisely at H=O
there are fewer conditions and the system jumps from
one equation to another, in accord with the principles of
the theory of critical behavior.

We can conclude from our results, as well as the argu-
ments of Staudacher, that the naive identification of the
kth multicritical one-matrix model with the theory in

which the unitary conformal series is coupled to two-
dimensional gravity is wrong. Instead it should be
identified with the Yang-Lee edge singularity.

We have no reason to suspect that the k 2 one-
matrix model, corresponding as it does to triangulations
with purely positive weights and having a positive parti-
tion function for all genus, is not unitary. Most likely,
however, all the higher multicritical points correspond to
nonunitary theories. However, one might conjecture
that, since they have the same critical exponents as the
unitary models, they might be understood as the cou-
pling of these models to some external complex fields. It
would be interesting to explore this possibility.

To this end, as well as for the general development of
the nonperturbative two-dimensional gravity, it is im-
perative to develop methods that would allow us to ex-
tend the results of Refs. 1-3 directly to the unitary
series. These can be formulated as matrix models and
solved on the sphere, but the methods of Refs. 1-3 must
be generalized to deal with them beyond lowest order.

Work along these lines is in progress.
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