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I give a second-quantized example of infinite statistics (in which any representation of the symmetric
group can occur) for identical particles and discuss the properties of the example.

PACS numbers: 05.30.—d

[a(k),a (I)]

[a(k),a (l)]~ =8k (, (2)

where [A,B]+=AB+ BA. Hegstrom made the percep-
tive suggestion to find a new operator relation which may
have properties intermediate to Bose and Fermi statistics

Since the work of Green' in 1953, we have known that
the possible statistics of identical particles include para-
Bose and para-Fermi statistics of positive integral order

p (for p =1 these reduce to Bose and Fermi statistics).
There is a neat way to describe which representations of
the symmetric group occur in each case: For the para-
Bose case of order p exactly those representations of the
symmetric group with at most p rows in their Young pat-
terns occur, which means that at most p particles can be
in an antisymmetric state; for the para-Fermi case exact-
ly those representations with at most p columns occur,
which means that at most p particles can be in a syrn-
rnetric state. The systematic classification of particle
statistics in greater than two space dimensions by Do-
plicher, Haag, and Roberts and the discussion of trilin-
ear commutation relations by Govorkov3 found only one
new case in addition to para-Bose and para-Fermi statis-
tics: "infinite" statistics in which all representations of
the symmetric group can occur. These authors did not
give an example of infinite statistics. The purpose of this
Letter is to give a second-quantized example of infinite
statistics and to discuss its properties.

Bose and Fermi statistics are characterized by corn-
mutation and anticornmutation relations, respectively:

a(k)
~
0) =0. (4)

These relations allow the calculation of the vacuum-to-
vacuum matrix element of any polynomial in the a's and
a 's. To calculate a matrix element which is a monomial
in a's and a 's, consider the rightmost a. If it acts on the
vacuum to the right, the matrix element vanishes from
(4). If not, it has an a immediately to its right. In that
case use (3) to replace the pair of operators aa t

by a
Kronecker 8 and the remaining matrix element has two
fewer operators. Continuing this process yields zero, un-

less the number of a's equals the number of a 's, in

which case the matrix element is a product of Kronecker
8's. This is similar to the calculation for Bose or Fermi
operators, except that for infinite statistics the vacuum
matrix element of a monomial in a's and a 's is a single
product of Kronecker 8's, so that the calculation is much
simpler for infinite statistics than for the Bose or Fermi
cases. For polynomials in the operators, add up the re-
sults for the monomials of which the polynomial is com-

by averaging the above relations to get

a(k) a'(I ) = hk (. (3)

Polyakov pointed out that (3) is a special case of the
quantum group "q-mutator" relation a (k )a (I )
—qa(I)a(k) =8(, (, where a is a for q real and aq =at.
for q complex.

In this Letter I develop Hegstrom's suggestion. Just
as in the Bose and Fermi cases, I assume the existence of
a unique vacuum state annihilated by all the annihilators
a(k):
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posed. Note that no statement need be made about aa or
a a; in matrix elements these can be evaluated from

Eqs. (3) and (4) above. In particular, consider

(oia; . a;,a;,ai, ai, . . . ai i0). Clearly, this matrix
element vanishes unless m =n and ik =jk for all k.
%'hen these conditions are satisfied, the matrix element
equals 1. Thus the norm of every monomial in the a 's

acting on i 0) is l. Note that although multiple occupan-

cy of a single quantum state is allowed (in contrast to
Fermi statistics), the norm of states such as [a (k ) l" i 0)
remains 1, unlike the case of Bose statistics. This makes
it clear that if we choose a polynomial P in which the
creation operators are put in an arbitrary representation
of the symmetric group the norm of

sion of a monomial in a's and a 's is a monomial in

which all adjacent aa pairs are replaced by the corre-
sponding Kronecker 8's. (An expression such as aaa a
is replaced by a product of two Kronecker b's, etc.) The
a's and a 's which are already in normal order remain as
a factor. Again, for polynomials, add up the monomials.

To construct the operators for the energy, momentum,
angular momentum, etc. , in terms of the annihilation
and creation operators, it suSces to construct a set of
number operators, n„such that

[n;,a)] = —8; iaj .

Then the energy operator, for example, is

~(a,t) io) (5)
E= zn;,

is positive. Thus Hegstroms's operator relation leads to
infinite statistics.

Define normal ordering in the usual way: All a 's

must be to the left of all a' s. The normal-ordered expan-

where e; is the single-particle energy for a noninteracting
system or the eigenenergy for an interacting system. For
parastatistics, the n; are bilinear in the a's and a 's; how-

ever, for our example of infinite statistics, they are of
infinite degree:

n(=a( a(+a akag a;a/, + z a/, , a/„a, a, ak2ak, + + z„ak,ak, ak a; a;a/, . ak, ak, +t
k kl, k2 kl, k2, . . . , k,

[As far as I know, this is the first case in which the number operator, Hamiltonian, etc. , for a free field are of infinite
degree. This probably occurs because (3) defines a quantum group. ] In verifying that (6) is valid, the contributions
with aa coming from a given term in n, cancel against a contribution from the next term in n; so that the commuta-
tor telescopes to give the stated result.

Note that the operator relations and the definition of the number operators transform properly under unity transfor-
mations of the a's and a 's. Any kinematics —nonrelativistic, relativistic, whatever —can be chosen for the energy of
the free quanta. The transition operators n;, for the transition from state j to state i are defined in analogy to the num-
ber operators n;: just replace a; a; by a; a, in each term in n; Desp. ite the infinite series for the number operator and
other observables, these operators are no worse behaved than the corresponding (para) Bose and Fermi operators.

To construct fields in position space, treat the subscripts i as momentum indices and use the Fourier transform:

y(x) =(2n) 3 2 dik[2ai(k)] ' 2[a(k)e —a.x+at( k)ei" x] (9)4

Here the a's and a 's have nonrelativistic normalization, but I have chosen relativistic four-vector notation for the ex-
ponentials in the Fourier transform. Higher-spin fields can be defined in an analogous way.

To discuss possible locality properties of the infinite statistics field, it is useful to have charged fields with particles
and antiparticles. I call the particle annihilation and creation operators b and b and the antiparticle operators d and
d . Then the charged scalar field is

p(x) =(2n) d k[2'(k)] ' [b(k)e '"'+d ( —k)e'"'"l
4

The analog of the Hegstrom relation (3) is
where

(lo)

b(k)b (I) =d(k)d (I) =hk i,

bd =db =0,
and the analog of the unique vacuum condition is

b(k) iO) =d(k) iO).

The charge operator for this field is

(l2)

Q=g[b (k)b(k) —d (k)d(k)].

Other operators which, at least for the free field, are
bilinear in creation and annihilation operators can be
made to give the desired commutators with the field by a
construction analogous to that just given for Q. Let 6
be such an operator. Then define

Q= X Z X 3'i, ' ' ')'i„Q3'i„'
b, d n~o ll, , l„

(l3) 3'I„3 I„
y~b, d n o II . . . ~ In

(l4)
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If 6=+&,qoz, qb (p)b(q), then

6(,b'(i)] =go, ,b'(p) .
P

(1S)

(0) y(x)y'(y) )0) -(0
(
y'( —y)y( —x)

~
0&,

(0[ y'(x)y(y) [0) -&0[ y( —y)y'( —x) [0). (18)

The extension to arbitrary spin is routine. The validity
of the TCP theorem despite the failure of the spin-
statistics theorem reminds us of the fact that the TCP
theorem is weaker than the spin-statistics theorem, as il-

lustrated by Jost's example.
To discuss cluster decomposition properties of free

infinite-statistics fields, note that, just as for free Bose or
Fermi fields, an arbitrary vacuum matrix element of a
product of fields is a sum of products of two-point func-
tions. For simplicity, consider the case of a single neu-

tral scalar field, A. Let

F'"'( , x. (. . , )x=(0
i A(x() A(x„) i0) .

Then F " =0, fOr n odd and for even n

F " =g(0 ( A (x ()A (x; )
~
0) . &0 ( W (x, )A (x.) ) 01,

(20)

To save writing, call the operator 6 the "core" and the
operator 6 =A(8) the corresponding "apple. "Then

[A(b (k)d (l)),d (p)] —=b (k)d (l)d'(p). (16)

Such trilinear terms ruin the local commutativity of
[A(j„(x)),p(y)], where j„(x)=i [p (x),8„&(x)]+.
(The expression for j„seems to be too large by a factor
of 2; however, for infinite statistics it is correct. ) I have

also verified that A(j„(x))does not commute with itself
at spacelike separation. In view of the connection with

quantum groups, this may be connected with the non-

commutativity of the coordinates of the spaces on which

quantum groups act. Furthermore, A(j„(x)) is also not
local in the sense of being a functional of the fields p(x)
and p (x) in the neighborhood of x, since Jd l
&b (l)b(l) is a nonlocal functional of the fields (((((x)

and pt(x). The lack of locality may raise questions
about the relativistic version of the theory; however, at
least, there is a valid nonrelativistic theory of infinite
statistics. For the free field both j„(x) and A(j„(x))
are conserved.

Since the particles obeying infinite statistics do not
have a local-field theory, there is no spin-statistics re-
striction for such particles and they can have any spin.
It is amusing to note that, despite the failure of local
commutativity, the TCP theorem is valid for free
infinite-statistics fields. Because of (11) and (12), the
vacuum-to-vacuum matrix elements of products of free
fields are products of two-point functions; thus it suffices

to verify the TCP theorem for the two-point function.
One need only check that

where the sum runs over all partitions of 1, . . . , n into
pairs of numbers in increasing order with the constraint
that the two-point function (0~8(x;)A(xi) ~0) occurs
only if j—i is odd. It follows from this result for the free
n-point functions and the spectrum of the two-point
function, which is the same as for a free Bose field, that
cluster decomposition holds. The proof, which I will give
else~here, follows the line of Jost, who points out that
clustering theorems can be proved without using locality.

The statistical mechanics of particles obeying infinite
statistics can be derived in a similar way to the usual
derivation of Boltzmann statistics. The partition func-
tion Z~ is given by

PH— (21)
quantum states

For a given set of occupation numbers [n(p)], with
N =g~n(p), there are

g{n(p&l -(('!/tin(pj! (22)
P

Z/v

orthogonal quantum states. This is just Boltzmann
counting without the Gibbs 1/N. factor. In view of this
last result, we can call the case of infinite statistics
"quantum Boltzmann statistics. " Thus, for a nonrela-
tivistic gas which obeys infinite statistics the partition
function (in standard notation) is

Z/ - [V(mkT/2ZA ') 'i'] ~ (23)

'H. S. Green, Phys. Rev. 90, 270 (1953). Further discussion
of parastatistics appears in O. W. Greenberg and A. M. L.

Govorkov has suggested that quantum Boltzmann
statistics corresponds to the statistics of identical parti-
cles with an infinite number of internal degrees of free-
dom, which is equivalent to the statistics of nonidentical
particles since they are distinguishable by their internal
states. [The internal symmetry could be SU(~).] In this
case, the increase in entropy which occurs when two
samples of the infinite-statistics gas at the same tempera-
ture and density are mixed avoids the Gibbs paradox of
the entropy of mixing of identical molecules.

To conclude, we have filled a gap in the list of second-
quantized particle statistics by giving an example of
infinite statistics. I am presently studying the q-mutator
relation for —

1 ~ q ~ 1 to construct a family of theories
which interpolate between Bose and Fermi statistics.
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for suggesting the relation aa 8. I thank Professor A.
M. Polyakov for pointing out that (3) is a special case of
the q-mutator relation; Professor A. B. Govorkov for in-
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fessor Peter Freund for suggesting the interpolation in q
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1 and 1. I have benefited from discussions
with Professor Rabi Mohapatra and Dr. Ioannis Bakas.
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