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X-Ray Determination of the Orientational Distribu-
tion Function of Rod-Shaped Particles

In an important recent Letter, ' Oldenbourg et al.
determined the orientational distribution function
(ODF) of rod-shaped tobacco-mosaic-virus (TMV) par-
ticles in solution from their small-angle x-ray diA'raction

pattern. They derived an integral equation relating the
ODF, f(I ), to the measured intensity distribution G(+)
along equatorial arcs in the pattern. A solution of this
equation yields, in principle, f(I ) in terms of G(O).
The equation could not, however, be solved analytically,
and a model f(I ) had to be assumed. While the model

proved to be an excellent choice in this case, an analytic
solution, being unbiased and general, would be prefer-
able. Furthermore, closely related equations have been
used to determine experimentally the ODF of fibers and
both monomeric and polymeric thermotropic liquid crys-
tals. In all these cases the only requirement is that the
intensity distribution G(@) due to single-particle scatter-
ing is measurable, and that it is free from interparticle
interference effects. Indeed, such an equation could be

applied to other systems composed of partially aligned,
rodlike particles. One such system, grafted rods, was
extensively studied theoretically and arguably exhibits
subtle variations in the order parameter as a function of
the grafting density, which may indicate a "standing up"
phase transition. Thus, an analytic solution should find a
wide range of applications. Such a solution has now
been obtained. The derivation is outlined below and
closed-form expressions for f(1) and the order parame-
ter S are given.

The equation relating the measured G(@) with f(I )
1s
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where to and I are the angles of the rod axis relative to
the x-ray beam and the mean axis of ordering, respec-
tively. + is the angle from the equator of the diAraction
pattern (see Fig. 1 in Ref. 1) and I, (to) is the single-
particle scattering form factor. For the conventional
scattering geometry' cosI costtfsinm. Changing vari-
ables in Eq. (1) first by to I then by cos%' y and
cosl r yields after some manipulations an Abel-type
integral equation which can be solved to give
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The derivation requires that I, (to)=—I, (r,+)-J,(r)
XK, (%'). TMV in solution, as well as the other physical
systems discussed above, ' conforms to this requirement
as do all thin rods having a uniform electron density. In
this case' I, (ta) 3/sinco so that J, (I ) 8/cosI and
K, (%') cos+.

The nematic order parameter S can now be evaluated
directly from the measured G(@) data, using Eq. (2)
without having to calculate f(1 ) explicitly. This yields,
for I, (to) 8/sinco,

range of a concerned it closely approximates the exact
result. We also note that the series can be obtained by
using the asymptotic expansion for Io, in which case
a' a.
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where P2 is the second-order Legendre polynomial.
Similar expressions can be derived for higher-order pa-
rameters (Pi). The numeric evaluation of Eqs. (2) and
(3) for a discrete set of measured G(%') values can best
be done analytically, using a functional representation
such as splines or orthogonal polynomials fitted to the
measured G(+) values. Further details of the deriva-
tion of the equations above will be given elsewhere.

Using the Gaussian-model f(I ) of Ref. 1, Eq. (1) can
be integrated directly to yield G(0) =Aexp(p)IO(p),
where p=(cos+/2a), lo is the modified Bessel function
of order zero, and a is the width parameter of f(I ).
These model G(+) and f(I ) can be used to check the
validity of Eqs. (3) and (2) above. Finally, with the
availability of a closed-form expression for G(%'), the
use of the truncated series expansion, Eq. (3) in Ref. I,
is not required, although, as discussed in Ref. l, for the
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