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Selective Population and Detection of Edge Channels in the Fractional Quantum Hall Regime
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Transport in the fractional-quantum-Hall-eff'ect (FQHE) regime is studied in a two-dimensional elec-
tron gas (2DEG) employing adjustable barriers as current and voltage probes. We find a fractionally
quantized Hall conductance for integer filling factor in the bulk of the 2DEG, as a consequence of the
fractional filling factor in the probes. We argue that this eA'ect is the first manifestation of adiabatic
transport in the FQHE. The results are in agreement with a proposed Landauer-Buttiker formula in

which each fractional edge channel contributes a conductance —,
' e /h.

PACS numbers: 72.20.My, 72. 15.Gd, 73.20.Dx

The similarity in experimental appearance between
the integer quantum Hall effect (IQHE) and the frac-
tional quantum Hall effect (FQHE) is striking in view of
their theoretically different origins. While a single-
particle description can be used for the IQHE, the
FQHE originates from a many-body interaction. '

A clear picture of the IQHE in terms of edge chan-
nels has recently gained much attention, both theoreti-
cally and experimentally. The transport in the IQHE re-
gime can then be described within the Landauer-
Buttiker formalism. Recent experiments have demon-
strated that edge channels can be selectively populated
and detected by current and voltage contacts. The ex-
periment of Ref. 7 shows that scattering between edge
channels can be very weak on length scales of the order
of a micrometer. On these lengths scales the IQHE can
be described in terms of adiabatic transport in edge
channels, which can be viewed as independent current
channels.

In the IQHE, edge channels are located at the bound-

ary of the two-dimensional electron gas (2DEG), where
the Landau levels intersect the Fermi energy. It is not
obvious how to generalize this definition of edge channels
to the FQHE, where a single-particle description no

longer applies. The existing many-body theory' based
on Laughlin's trial wave function essentially considers a
homogeneous system. The partially depleted region at
the 2DEG boundary, where in the IQHE regime the
edge channels are located, was not considered in these
theories for the FQHE.

In this Letter we study the transport along the bound-

ary of a 2DEG having an integer filling factor, using ad-
jacent current and voltage probes whose filling factors
can be varied. From the observation of a fractional
quantum Hall conductance which is completely deter-
mined by the filling factor in the probes, we conclude

that adiabatic transport can occur in the FQHE regime.
To describe our results we propose that fractional edge
channels exist at the 2DEG boundary, which can be
selectively populated and detected by current and voltage
probes, similar to the edge channels in the IQHE re-
gime. A Landauer-Biittiker formula generalized to the
FQHE provides quantitative agreement with the mea-
surements. This generalization as well as the concept of
fractional edge channels is supported by a recent theoret-
ical paper by Beenakker.

Chang and Cunningham' recently studied the trans-
mission probabilities between regions with filling factor
v 1 and 3, and between regions with v 3 and 3

They showed that their results could be described by the
Landauer-Buttiker formalism if the electron charge e
was replaced by e, the fractional charge of the quasi-
particles in the FQHE. The results of these barrier-
resistance measurements are consistent with an interpre-
tation in terms of transmission and reflection of edge
channels, but do not demonstrate adiabatic transport in

the FQHE, i.e., the crucial issue of whether or not the
fractional edge channels can be treated as independent
current channels on appropriate length scales. To
demonstrate adiabatic transport, two spatially separated
barriers are required, which can act as injector and
detector of edge channels —as in the experiment present-
ed in this Letter.

The inset of Fig. 1 schematically shows the geometry
of the double-barrier device. A Hall bar is etched in a
high-mobility GaAs/A1GaAs heterostructure to which
Ohmic contacts, labeled from 1 to 6, are attached. The
electron density of the 2DEG is 1.8X10' /m and the
mean free path is 9 pm. On top of the heterostructure
three gates are fabricated. The voltage on the black
center gate is kept fixed at a negative value of —3 V, in

this way creating a sufficiently extended depletion region
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FIG. 1. Barrier conductances G~ and Gg as a function of
gate voltage at a field of 7.8 T. The curve Gg has been offset
for clarity. The double-barrier geometry defined by three
different gates is shown in the inset. The arrows indicate the
direction of electron flow along the sample edges.
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in the 2DEG to prevent conduction through the two nar-
row openings (width 300 nm) separating the different
gates (see also Fig. 3). A negative voltage V~ or Ve on
the hatched gates (width 0.5 pm and length 40 pm of
the smaller-width section) creates a potential barrier un-

derneath them, which locally reduces the electron densi-
ty n, and consequently the filling factor v hn, /eB

Figure 1 shows the two-terminal conductances" of the
barriers as a function of gate voltage measured at 20 mK
and at a fixed magnetic field of 7.8 T. At this field the
filling factor of the bulk 2DEG is slightly less than 1,
which can be seen in Fig. 1 at zero gate voltage. The de-
creasing gate voltage gradually reduces the conductance
of each barrier until pinchoff occurs at —0.27 V. Al-
though the observed fractional plateaus are not fully
developed, the change in slope at a gate voltage of
—0.175 V can be attributed to the 3 fractional state, as
we will discuss below.

Figure 2 shows the Hall conductances measured at
8 7.8 T, employing barrier 8 as the voltage probe and
barrier 8 as the current probe. The Hall conductance is
defined as GH. ~4 23 indicating that the current flows from
contact 1 to 4 and the voltage is measured between con-
tacts 2 and 3. Figure 2(a) shows the Hall conductance
as a function of equal voltage on both gates A and 8.
Although the filling factor in the bulk 2DEG is un-

changed in the fixed magnetic field, the Hall conduc-
tance drops from e /h to —', e /h at —0.175 V. A similar
behavior is seen if one gate voltage is kept fixed and the
other is varied. In Figs. 2(b) and 2(c) one voltage is
fixed at —0.2 V and in Fig. 2(d) the voltage on gate A is

fixed at —0.15 V. The dashed lines in Figs. 2(a) and
2(d) are calculated from the barrier conductances G~
and Ge (see Fig. I), which will be discussed below.

The Hall conductance GH23 ~4 measured by inter-
changing the current and voltage probes, did not show

GATE VOLTAGE (V)

FIG. 2. Hall conductances as a function of gate voltage at a
field of 7.8 T. In (a) both gate voltages V~ and Vg are varied
simultaneously and in (b)-(d) one gate voltage is kept fixed.
The rapidly rising parts (dotted) are measurement artifacts
due to barrier pinchoff. The dashed lines are calculated from

Eqs. (1), see text.

the anomalous drop to the 3 plateau. Instead, GH. 23 ]4

was independent of the gate voltage and corresponded
with the filling factor in the bulk 2DEG.

To describe our results we propose the existence of
fractional edge channels, which follow diAerent equipo-
tential lines along the boundary of the sample. The ad-
justable barriers used as current and voltage probes in

the experiment provide a selective coupling to these frac-
tional edge channels. Coupling to a certain edge channel
occurs if this channel follows an equipotential line which
is higher than the probe potential barrier. Fractional
edge channels following equipotential lines which are
lower than the barrier potential of the probe are not
transmitted over the barrier and thus will not be popu-
lated by a current probe nor detected by a voltage probe.
Each populated or detected fractional edge channel is as-
sumed to contribute —,

' e /h to the Hall conductance (for
simplicity only the p/3 fractional channels are con-
sidered, with p 1,2,3). However, if no coupling of the
current probe or the voltage probe exists to a particular
fractional edge channel, and interedge channel scattering
between the probes is absent, this channel will be ir-
relevant for transport measurements. In this way devia-
tions in the measured Hall conductance from the expect-
ed bulk value are a direct demonstration of adiabatic
transport in fractional edge channels over the distance
between the current and the voltage probe.

Selective population and detection of edge channels
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has been investigated in the integer quantum Hall re-

gime. ' Reference 7 gives a derivation of the Hall con-
ductance depending on the transmission properties of the
current and voltage probes. It follows from this deriva-

tion, which included only integer edge channels, that this
Hall conductance cannot be smaller than e /h, even

when the filling factors of the probes are less than l.
The observation of a Hall conductance below e /h there-
fore indicates the failure of the integer formalism. For
describing our present results we include the fractional
edge channels proposed above in the derivation of Ref. 7.
Considering only the p/3 fractions we obtain

GH

2

3h
max(NI+ TI Nv+Ty) if NlcNy,

e~ (N+TI)(N+Ty)
3h N+T T

if Nj Nv N.

(la)

(lb)

&I and Nz denote the number of fully transmitted frac-
tional channels through the current and the voltage
probe, respectively. TI and Tz are the transmission
probabilities (0~ TI, Ty ~ 1) through the current and
the voltage probe, respectively, of the partially transmit-
ted upper channel. Note that Eqs. (1) are independent
of the filling factor of the bulk 2DEG, but are completely
determined by the transmission properties of the current
and voltage probes. Consequently, the fractional quanti-
zation of the Hall conductance is determined by the
filling factors in the probe barriers. A prerequisite for
the validity of Eqs. (1) is the occurrence of adiabatic
transport, requiring the absence of scattering between
adjacent channels over the distance between the current
and voltage probes ( & 2 pm in our device).

In Fig. 3 we have illustrated the electron flow for the
case of three fractional edge channels in the bulk 2DEG.
The current probe populates only two of them (NI-2,
TI 0) and the voltage probe detects two fractional edge
channels (Nv 2, Ty 0). According to Eqs. (1) the

2/m

VOLTAGE PROBE p 5 pm CURRENT PROBE

FIG. 3. Illustration of the selective population and detection
of the first and second fractional edge channels. In this case
the third channel does not contribute to the Hall conductance.
The dotted line along the black center gate indicates the de-

pletion area induced by the center gate voltage, which prevents

conduction through the narrow openings separating the
different gates.

Hall conductance for this case is equal to —,
' e /h, which

corresponds to the experimental situation of V~ = Vg
= —02 V

To compare the proposed description quantitatively
with the measurements we have calculated the Hall con-
ductance with the measured barrier conductances G~ as
voltage-probe conductance and Gq as current-probe con-
ductance (see Fig. 1) substituted in Eqs. (1). The results
are shown in Figs. 2(a) and 2(d) (dashed lines) demon-

strating a good agreement with the measured Hali con-
ductances. Note again that an integer calculation would

give a constant Hall conductance at e /h. The Hall con-
ductance in Fig. 2(a) is calculated from Eq. (lb) with a
fixed equal number of fully transmitted channels
(NI Ny 2) and the measured transmission of the
third fractional channel of each barrier between 0 and 1,
i.e., -', e /h & G~, Ge & e /h (Fig. 1). Figure 2(d) shows

that the Hall conductance can also be fixed at a value in

between the plateaus, whenever the largest barrier con-
ductance is fixed and not quantized (in this case
NI &Ny 2 and Ty 0.62 when Ve & —0.175 V). In
the region —0.175 V & Vg &0 V the Hall conductance
is determined by both barrier transmissions (NI Nv 2
and TI, Tye0). The curves in Figs. 2(b) and 2(c) can
be compared directly with Fig. 1 because in these cases
one probe is kept fixed at the 3 quantized value. Ac-
cording to Eq. (la), Fig. 2(b) should follow the current-
probe conductance Gs for Vs & —0.175 V (NI Ny 2,
Tv 0, and Ti&0) and be equal to —', e /h for lower Vs

(Ny 2 & NI ). In Fig. 2(c) the Hall conductance
should follow the voltage-probe conductance G~ for
Va & —0.175 V (Nv NI 2, TI 0, and Tve0) and
be equal to —', e /h for lower V~ (NI 2&Nv). Com-

paring Figs. 2(b) and 2(c) with Fig. 1 it can be seen that
there is good agreement between the proposed descrip-
tion and the experiment. Similar measurements as in

Figs. 2(b) and 2(c) for a number of fixed voltages on one
single gate between —0.19 and —0.22 V did not show

any dependence of the measured Hall conductance on
this gate voltage. This indicates that in this range of
gate voltage the barrier conductances G~ and Gg are
indeed quantized at the 3 fraction. The fact that the
measured barrier conductances G~ and Gg do not show
well-defined fractional plateaus may be related to
scattering in the not fully quantized bulk 2DEG, which
is measured in series.

The observation that GH. 23 /4 (i.e., with current and

voltage probes interchanged) is independent of VA and

V~ and equal to the bulk 2DEG value can also be under-
stood within the proposed description. In this case the
Ohmic contact 1 (see inset of Fig. 1) is the relevant volt-

age probe, which will couple equally to all edge chan-
nels in the 2DEG. The Hall conductance should now

correspond to the bulk filling factor, as is found experi-
mentally. Note that complete equilibration over the long
distance from probe A to Ohmic contact l yields the
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same result.
The agreement between the proposed description in

terms of fractional edge channels and the experiment
demonstrates that adiabatic transport occurs over the
distance between the current and voltage probes. Ap-
parently, the boundary defined by the center gate (black
gate in Fig. 3) is sufficiently smooth that scattering be-
tween the second and third fractional edge channels is

suppressed. The fact that we did not observe a Hall con-
ductance quantized at —,

'
may indicate that the boundary

is not sufficiently smooth to suppress scattering between
the first and second fractional channels. Although the
energy separations between the first and second and be-
tween the second and third fractional channels are ex-
pected to be equal, the separation in space may diff'er

when the boundary potential changes nonlinearly. We
have studied the influence of the smoothness of the
boundary in more detail in a second sample of identical
design, but with a higher electron density of 2.3X10' /
rn . With —3.0 V applied to the center gate this sample
did not show a deviation of the Hall conductance from
the bulk 2DEG value, indicating that all channels are
completely mixed. However, at lower voltages applied to
the center gate, the Hall conductance showed quantiza-
tion at anomalous values. With —4.5 V on the center
gate the 3 fractional value was almost reached. Hall-
conductance measurements performed on this sample at
a center-gate voltage of —4.5 V confirmed the results
presented in Fig. 2. Apparently a lower center-gate volt-

age increases the depletion region until a sufficiently
smooth boundary potential is formed at —4.5 V. Here
the mixing between the second and third fractional chan-
nels is almost absent. It is difficult to determine quanti-
tatively, including screening, the spatial locations of the
fractional edge channels. However, the strong influence
of the boundary potential evident from this experiment
clearly shows that the properties of the boundary are of
prime importance for the anomalous fractional quantiza-
tion of the Hall conductance, in accordance with the pro-
posed description in terms of fractional edge channels. '

In a recent paper Beenakker extends the Landauer-
Biittiker formalism to include the FQHE regime. He
also theoretically demonstrates the formation of edge
channels in the FQHE regime in a slowly varying bound-

ary potential. The ith edge channel corresponding to the
fractional filling factor v; contributes (v; —v; t)e /h to
the conductance, where v; ~ is the lower filling factor
corresponding to the next separated edge channel. If
only the p/3 states are considered, Eqs. ( I ) can be

derived from the multiterminal generalization given in

Ref. 9.
In summary, transport in edge channels in the frac-

tional quantum Hall regime has been studied experimen-
tally by using two closely spaced adjustable barriers as
current and voltage probes. By selectively populating
and detecting these fractional edge channels, adiabatic
transport over a distance exceeding 2 pm has been
demonstrated. These results are in quantitative agree-
ment with the generalized Landauer-Buttiker formalism
for the fractional quantum Hall regime derived in Ref. 9.

We thank C. W. J. Beenakker for communicating his
results to us prior to publication. We also thank R. Ep-
penga, R. B. Laughlin, D. van der Marel, L. W. Molen-
kamp, J. E. Mooij, A. A. M. Staring, and J. G. William-
son for valuable discussions, M. E. I. Broekaart and S.
Phelps at the Philips Mask Centre, J. J. Harris at Philips
(Redhill), and A. van der Enden at the Delft Centre for
Submicron Technology for their contributions to the fa-
brication of the devices, and the Stichting voor Fun-
damenteel Onderzoek der Materie for financial support.

'S«, for two reviews, The Quantum Hall E+ect, edited by
R. E. Prange and S. M. Girvin (Springer-Verlag, New York,
1987) and T. Chakraborty and P. Pietilainen, The Fractional
Quantum Hall Egect (Springer-Verlag, New York, 1988).

zB. I. Halperin, Phys. Rev. B 25, 2185 (1982).
P. Streda, J. Kucera, and A. H. MacDonald, Phys. Rev.

Lett. 59, 1973 (1987).
4J. K. Jain and S. A. Kivelson, Phys. Rev. Lett. 60, 1542

(1988).
5M. Buttiker, Phys. Rev. B 38, 9375 (1988).
sS. Komiyama, H. Hirai, S. Sasa, and S. Hiyamizu (to be

published); B. W. Alphenaar, P. L. McEuen, R. G. Wheeler,
and R. N. Sacks, this issue, Phys. Rev. Lett. 64, 677 (1990).

7B. J. van Wees, E. M. M. Willems, C. J. P. M. Harmans, C.
W. J. Beenakker, H. van Houten, J. G. Williamson, C. T. Fox-
on, and J. J. Harris, Phys. Rev. Lett. 62, 1181 (1989).

R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
C. W. J. Beenakker, Phys. Rev. Lett. 64, 216 (1990).

' A. M. Chang and J ~ E. Cunningham, Solid State Commun.
72, 651 (1989).

''The experiments are performed with two adjacent Ohmic
contacts on either side of the barrier. The configuration of
voltage and current contacts was such that eff'ectively the two-
terminal conductance is measured.

' The strong inAuence of the boundary potential explains why
we did not observe an anomalous fractional quantized Hall
effect in a device with two adjacent point contacts, as used in
Ref. 7.

688


