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Algebraic Instability of Hollow Electron Columns and Cylindrical Vortices
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An axisymmetric, magnetically confined electron column, in which the Ex B rotation frequency is not
a monotone function of radius, is linearly unstable to two-dimensional, electrostatic disturbances with
azimuthal mode number I 1. The perturbation density is asymptotically proportional to Jt and may be
described as a shift of the core of the column. A particle-in-cell simulation indicates that harmonics
grow rapidly and that there are secondary instabilities. An identical instability arises in hollow circular
vortex columns in an inviscid, incompressible neutral fluid.
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Shear-flow or diocotron instabilities often arise in

low-density non-neutral plasmas; here we explore a new

and unusual case. We consider an axisymmetric single-
species plasma confined by a magnetic field Bz which is

sufficiently strong to justify a guiding-center drift ap-
proximation. Such a plasma has been studied extensive-

ly in laboratory experiments (see, e.g., Ref. I). If the ra-
dial density profile is hollow, so that the E&B rotation
frequency has a stationary point as a function of radius,
we find a new, algebraically growing instability, associat-
ed with the continuous spectrum of the E&B evolution

operator. This situation may be contrasted with more
familiar, exponentially growing diocotron instabilities,
and occurs even in the absence of the latter. We have
observed the algebraic growth of the instability in parti-
cle simulations, which also illustrate unusual features of
its large-amplitude behavior.

The cross-field evolution of the guiding-center density
is described by the continuity equation (t)/Bt+vE V)n

0, where the E&& 8 velocity is vE cB 'ix V&, and the
electrostatic potential p is related to n by the Poisson
equation V p 4tren Cylind. rical polar coordinates (r,
e,z) are used here. These equations are identical, up to
constants of proportionality, to the vorticity-stream-
function formulation of the Euler equations describing
the flow of an inviscid, two-dimensional neutral fluid of
uniform density. The vorticity is identified with the elec-
tron density n, and the stream function, with the electro-
static potential p.

Let the equilibrium be described by a smooth density
no(r) which is independent of z and 8, with a conducting
wall located at r R, where IS 0. Hollow profiles like

the one shown in Fig. 1 will be of special interest. Simi-
lar electron columns have been created in the laborato-
ry. %'e allow for electrostatic perturbations which vary
in r and 8.

A corollary of Rayleigh's inflection-point theorem, as
extended by Arnol'd, shows that such an equilibrium is

nonlinearly stable if no is monotone in r. We derive a
sufficient condition for instability which is somewhat

more restrictive than those previously available.
Since the equilibrium is axisymmetric, linear stability

may be analyzed independently for each azimuthal
Fourier component; the new instability involves only the
fundamental modes. We isolate an infinitesimal pertur-
bation potential bIS ISI (r, t )e' +c.c. The continuity
equation may be written as

+I'mE(r) — ra a
8t r 8r 8r r

. 4zec—i nt'I(r)IsI 0,
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FIG. 1. Top: radial density (or vorticity) and rotation-

frequency profiles of the fluid equilibrium used in the simula-
tion. The boundary condition p 0 is imposed at r 1. Bot-
tom: Asymptotic radial dependence of density (vorticity) and
potential amplitudes for a typical 1 1 perturbation. Phases
are independent of r.

1990 The American Physical Society 649



VOLUME 64, NUMBER 6 PHYSICAL REVIEW LETTERS 5 FEBRUARY 1990

where

coq(r) = (2nce/Br ) dr rno(r)~o
is the equilibrium rotation frequency. Note that mono-
tonicity of np(r) implies monotonicity of co+(r).

A conventional normal-mode analysis shows that
there is a single smooth eigenfunction —the fundamental
diocotron mode —with a purely real frequency, equal to
the ExB rotation frequency at the wall, if dno/dr van-

ishes at r R. For I ~ 2, there may be diocotron insta-
bilities which grow exponentially in time if coF(r) is

sufficiently peaked away from the origin. Numerical cal-
culations have shown that certain smooth, hollow equili-

bria are not addicted by such exponentially growing in-

stabilities (e.g. , those close to the stable step-function
profiles described by Levy ). The stability of the system
in this case is said to be spectrally indeterminate.

In addition to any normal modes, temporal evolution
of a perturbation generally involves contributions from
the continuous spectrum of the operator acting on p) in

Eq. (1), corresponding to the range of values of coE(r)
These may be examined by consideration of the initial-
value problem, following Case. In terms of a Laplace
transform p~(r) fc) dte t"p)(r, t), where the real part
of p is sufficiently large to insure convergence, Eq. (1)
becomes

I a a 1 . 4nec dno
[p+i coF (r ) ] — r —

yp i-
mp =4zen) (r, o),

r dr 8r r Br dr
(2)

where n)(r, 0)e' is the density perturbation imposed at t =0. It can be shown that contributions from the continuous
spectrum to perturbation potentials proportional to e' with I ~ 2 decay algebraically in time. No such argument ap-
plies to the I 1 component, because of a degeneracy in the fundamental solution for Eq. (2). The initial-value problem

may be reduced to quadratures as follows. Noting that

tl 3( +, )28 4P

Br Br r(p+icoe)
r (p+lcoE) r2 . 1 8 8

r c)r 8r

we can integrate Eq. (2), and invert the transform to obtain

Br ~R
pi(r, t) J dpe

'"' '[1+icoz(r)t —icoe(p)t]h(p),
C r

where the initial condition is described by the function

(3)

h(r)- ", „dpp'n)(p, 0).Br' "o

Poisson's equation then gives

t R
n)(r, t) n)(r, 0)e ' —itno(r) dpe

'"' h(p). (4)4r
For large t, the radial integrals in Eqs. (3) and (4) are dominated by contributions from the integration limit at R, and

from any stationary-phase points where dcoE(r)/dr =0. Thus

and

cy, (r, t)
B

—e "t r 4( QH(ri —r)[co~(rl) —co~(r)]e ' "

h(rz)[2z/incog(ri)

i]'.
J

+e ' r[coE(R) —coF(r)]h(R)+O(t 't ), (5)

n)(r, t) ——e " no(r) Jt QH(ri r)e ' " h(r, )[2—n'/i coE'(ri) i]'
J

+
—uv~ (R ) t It (R),

( ) + O (
—

I /2 )
cop (R)

where H(x) is the Heaviside step function and the sum-
mations over j refer to the stationary points fri] of coE.
The end-point contributions correspond to the neutrally
stable normal mode discussed above. The stationary-
phase contributions grow secularly in time (asymptoti-
cally proportional to t ', with spatial forms as shown in

Fig. 1). In summary, any axisymmetric equilibrium with
stationary points in the rotation frequency is unstable to
arbitrarily small disturbances such that h (r, )AO.

Asymptotically, the perturbation energy and enstrophy
grow linearly in time. Our result leaves open the possi-
bility of nonlinear instabilities in the case of equilibria
where coF (r) is monotone, but np(r) is not ( for instance,
a dense core surrounded by a thin annulus), whose sta-
bility can be spectrally indeterminate. '

Some unusual features of the instability should be not-
ed. For definiteness, we consider an equilibrium such as
the one shown in Fig. 1, with a single stationary point
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r, where dhoE/dr vanishes. The density perturbation
asymptotically takes the form (dna/dr )H (r, —r )e',
which corresponds to a shift of the plasma core. The di-

pole moment associated with the dominant part of the
perturbation is proportional to

pR pr,

J drr ni —J drr no(r)
0 0

drr — r roq(r), d 1 d
dr r dr

r 3ruF. (r, ) 0, (7)

so that the perturbation electric field near the wall does
not grow. Furthermore, if a perturbation of the asymp-
totic form is imposed at t 0, then h(r, ) is proportional
to Eq. (7), so the amplitude will not grow. The instabili-

ty is a result of phase coherence, rather than a single un-

stable mode.
The magnitude of the second-order mean partial flux

does not increase linearly with time, in contrast to the
perturbation time. The mean flux is

I (r) Reir 'bpbn*

rxr 'Imbrtp(8 /Br +r 'r)/Br r)btji*. —

Since the phase of the O(t 't ) terms does not vary with

r, the leading contribution to I is O(t 't ), and oscillatory
in r. The leading nonoscillatory term in I, which is con-
stant in time, dominates near the origin (for smooth ini-
tial perturbations) so that the central equilibrium density
increases linearly in time.

We have followed the evolution of this instability into
the nonlinear stage with a two-dimensional modulated-

particle-in-cell code. '" We represent the density per-
turbation as a set of fluid elements, each of which is as-
signed a position r; and charge q;. The code integrates
the characteristic equations for the elements, dr;/dt

v(r;), and dq;/dt ev(r;). Vno(r;). The velocity field
is the sum of the sheared rotation associated with the
equilibrium density no(r) and the flow due to the pertur-
bation elements. An azimuthal spectral filter concentrat-
ed near the origin is applied to the charge density as in-

terpolated from the particle positions onto a cylindrical
polar grid. A fast Poisson solver yields the potential
field. The velocity field is then interpolated back to the
particle positions, which are advanced using an Adams-
Bachforth scheme. The perturbation charges evolve

similarly.
Some results of a typical simulation are shown in Figs.

2 and 3. We employed 32000 particles on a grid of 128
radial and 128 azimuthal points. The equilibrium is

no(r) 1 +2(r/0. 6) —7(r/0. 6) +4(r/0. 6)

for r (0.6, and no 0 for r )0.6, with a conducting wall

at r 1 (as shown in Fig. 1). This is qualitatively simi-
lar to profiles observed in a recent series of experiments.
The initial conditions consist of a small-amplitude I 1

perturbation. We measure the perturbation and its har-
monics by the maximum norms of Fourier components of
the grid perturbation density. The evolution of the insta-
bility and its I 2 harmonic is shown in Fig. 2. As a test
of linearity, we show data from two runs differing only in

the amplitude of the initial perturbation (by a factor of
100). Data from the smaller-amplitude case (B) are
scaled for comparison in the figure. At small ampli-
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FIG. 2. Evolution of peaks of azimuthal Fourier components
of the density in the particle simulation. Symbols: +, 1=1,
run A; x, I 2, run 8; 0, / 1, run 8 (x 100); &, I =2, run 8
(x 100'). The time scale is set by the rotation frequency as
sho~n in Fig. 1: The minimum rotation period is about 12
units.
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FIG. 3. Density contours of run 8 at t 150 showing shar-
pening of the ridge near (x,y) (0,0.2) and the secondary in-
stability developing near ( —0.1,0). (Nonuniform contour in-
tervals were used for the sake of clarity. )
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tudes, the / I amplitude is described by Eq. (4) and

shows a Jt trend.
The nonlinear corrections to Eq. (I) lead to several

effects: rapid growth of harmonics, relaxation of the
equilibrium, and secondary instabilities. The 1=2 har-
monic is driven by second-order mode coupling, and may
grow algebraically or exponentially in time, depending
on resonances between harmonics of raF (r, ) and normal
modes. In the case shown, there is a near resonance in-

volving an l 2 mode, which grows accordingly as t for
most of the run. (Numerical solution of the eigenvalue
problem for the I 2 mode gave a growth rate of 0.0035
inverse time unit, which is negligible in the simulation. )
Higher-/ components grow even more rapidly. Eventual-

ly the higher-order terms can dominate the first-order
ones, as in the critical layer of a Rossby wave. ' ' In
the large-amplitude run (A), the second-order mean flux
eventually yields a monotonically decreasing density
profile. The I 1 excitation saturates at a level con-
sistent with the filling-in of the original depression.

The growing perturbation described above is subject to
two kinds of localized secondary instabilities. Density
contours (equilibrium plus perturbation) near the onset
of secondary instabilities are shown in Fig. 3. Recall
that the equilibrium density has an annular ridge. As
the primary instability grows, the core shifts outwards
and this ridge becomes increasingly sharp over some
range of azimuths. At large times, it locally resembles a
vortex sheet, which experiences a Kelvin-Helmholtz in-

stability. Inside the saddle of the ridge, the unfavorable
density gradient steepens across streamlines in a frame
rotating with the perturbation. The simulation suggests
that this configuration is subject to a localized instability
related to those described by Haynes. ' In cases accessi-
ble to our simulation, one or both of these phenomena
occur before the low-order harmonics become large. The
secondary instabilities typically involve small scales,
which are not well resolved in the simulation; details of
the later evolution are sensitive to the initial conditions
and integration parameters.

The applicability of our description will be limited by
the effects of viscosity or other dissipative processes. For
the neutral fluid, an argument of Case' suggests that
our analysis should apply to physically relevant perturba-
tions at large Reynolds numbers for intermediate times.
Moreover, viscosity would act slowly on the large spatial

scales which dominate the velocity perturbation in the
inviscid limit. Hence perturbations will typically show
transient growth on inviscid time scales. The rapidly
growing harmonics and the secondary instabilities in-

volve smaller scales, so the nonlinear effects may be less
robust. Preliminary calculations indicate that small
gyroradius or viscosity in the non-neutral plasma can
lead to exponential growth of 1=1 instabilities related to
the one described above, but the growth is slower than
observed in experiments. Dynamics along the magnetic
field may also be important.
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