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Observation of an Unstable I 1 Diocotron Mode on a Hollow Electron Column

C. F. Driscoll
University of California at San Diego, La Jolla, California 92093

(Received 11 September 1989)

Stable and unstable diocotron modes varying as e", with I 1, are measured on a magnetized, partial-
ly hollow electron column. The unstable mode is observed to grow exponentially over several decades, in

contradiction to present 2D fluid theory. This I 1 instability can dominate the evolution well into the
nonlinear regime, resulting in cross-field transport to a stable, monotonically decreasing density profile.
To the extent this process is described by 2D Ex B drifts, it is isomorphic to the Kelvin-Helmholtz
shear-flow instability of inviscid fluids.

PACS numbers: 52.25.Wz, 47.20.Ft, 52.35.Fp

Diocotron waves and instabilities are observed in many
nonneutral, magnetized beam or plasma devices. These
electrostatic waves are charge perturbations which exe-
cute ExB drifts in the unneutralized self-electric-field;
in cyclindrical geometry the spatial variations can be
written b'n(r)exp[ile+ik, z], with k, often zero. The
diocotron instability arises due to shears in the rotational
drift velocity; it was first utilized in the operation of mag-
netrons, ' but is often an unwanted degradation in the
propagation of hollow or ribbon beams. More recent-
ly, linear and nonlinear diocotron waves have been stud-
ied in detail on stable " and unstable charge-density
profiles. ' '

To the extent the charge column can be considered a
two-dimensional drift system (i.e., strongly magnetized,
k, 0, and no significant axial dynamics), it evolves as
a 2D inviscid fiuid. Specifically, the 2D drift-Poisson
equations are isomorphic to the 2D Euler equations for a
uniform density fiuid. Furthermore, the charge density
(which we measure) is proportional to the vorticity of
the Aow. The stable and unstable diocotron modes are
thus examples of surface waves and the Kelvin-
Helmholtz instability on an extended vortex.

Stability analyses of these systems often consider
"step" profiles in charge density (or vorticity). s"'4
Then, one mode arises from each density step, and

complex-conjugate modes appear as a prediction of ex-
ponential instability. Alternately, one can numerically
compute eigenvalues for smooth density profiles. For az-
imuthal mode number / 1, linear theory predicts that
there are no exponentially unstable modes no matter
what the density profile is, " unless there is a central
conductor. ' More recently, an initial-value theory sug-
gested that there may be an algebraically growing 1=1
instability for hollow profiles. ' For I » 2, experiments
have observed stable and unstable modes with frequen-
cies and growth rates in rough agreement with computed
eigenvalues. '

Here, we present detailed experimental measurements
of simultaneously coexisting stable and unstable 1=1,
k, =0 diocotron waves on partially hollow electron col-
umns. The two waves are not a complex-conjugate pair.
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FIG. 1. Schematic diagram of the cylindrical containment
apparatus.

Characteristics of the stable wave agree well with theory.
However, the unstable wave is observed to grow ex-
ponentially over several decades, in apparent contradic-
tion to theory. This unstable wave can dominate the dy-
namics well into the nonlinear regime, where substantial
cross-field transport occurs. In essence, an I 1 instabili-
ty turns the plasma "inside out, " resulting in a stable
density profile.

The pure electron plasmas are contained in a grounded
conducting cylinder, ' as shown in Fig. 1. A uniform ax-
ial magnetic field (8, 375 6) provides radial con-
finement, and negative voltages ( —50 V) applied to end
cylinders A and C provide axial confinement. The ap-
paratus is operated in an inject-manipulate-dump cycle.
For injection, cylinder A is brieAy grounded, allowing
electrons to enter from the negatively biased ( —23 V at
center) tungsten-filament source. The trapped electrons
can be contained for hundreds of seconds, ' and can be
manipulated in a variety of ways.

For this experiment, we apply a small l 1 "seed"
asymmetry to a quiescent, azimuthally symmetric col-
umn, then make the density profile hollow, and then
measure the resulting instability. The seed asymmetry is
the result of transmitting a (stable) l 1, k, =0 dioco-
tron wave of controlled amplitude and phase, using iso-
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lated 60' wall sectors. ' The density profile is then
made partially hollow by decreasing the containment
voltage on cylinder A (to —18 V for about 1 ps), there-
by ejecting some electrons near r 0. (The source is
biased positive during ejection. )

At any time t after ejection, we can obtain the z-
averaged plasma density by grounding cylinder C, there-
by dumping the plasma. We measure the charge Q
which Aows along 8, through a collimator hole of area
AI, n(1.6 mm), giving the density'

n(r, 8, t) =„Idz—n/L Q/( —eApL ) .

Only one density measurement is obtained on each
machine cycle, but shot-to-shot variations are less than
0.1%. We obtain the temporal dependence by varying
the evolution time t between ejection and dump, and the
spatial dependence by varying the position r of the radi-
ally scanning collimator hole, and the phase 8 of the seed
asymmetry at the time of ejection.

The plasmas considered here have local densities
n=5X10 cm out to a radius R~=2cm over an axi-6 —3

al length L~ = 30 cm, and are contained in a cylinder of
radius R -3.81 cm. The unneutralized space charge
gives a radial electric field E, + —7 V/cm, resulting in

an EX8 rotation frequency of fe +140 kHz. The elec-
trons have a characteristic thermal energy kT = 1.2 eV;
this gives a cyclotron radius r, =60 pm, and an axial
"bounce" rate fb = v II/2L~ = 800 kHz, so fb &&fe.

A typical hollow-plasma evolution is shown in Fig. 2.
The initial seed asymmetry, shown at t =10 ps, has two
components: The center of mass (c.m. ) of the plasma
column is displaced off' the cylindrical axis by 0.85 mm,
and the central density minimum is not centered in the

plasma. We observe that the c.m. orbits about the axis
at f, =38.9 kHz, with constant orbit size (this is the
stable mode). Similarly, the low-density region orbits
about the c.m. at f„143.4 kHz, but it spirals outward
with time (this is the unstable mode). The high-density
ring collapses in 8 into a high-density region, as shown at
t 120 ps. Eventually, the high-density region moves to
the center and the low-density region spreads out in 8 at
an appropriate radius, as shown at t =180 ps. Most 0
variations (with respect to the c.m. ) have been eliminat-
ed by t 1000 ps.

The initial stages of this evolution can be analyzed
from the perspective of linear modes, and our data for
n(r, 8, t) characterize the k, =0 modes rather complete-
ly. We consider the I 1 component of the data, given
by

8n (r, t )= d8 n—(r, 8, t )e' .

We observe that two frequency components are present
in these data, and that these frequencies do not vary with
radius. Thus, the I 1 data component can be computa-
tionally fitted by a sum of two modes, as

bn(r, t) +Dna(r)e ' e"',

with q s, u. This least-squares fit determines the mode
frequencies fq, growth rates yv, and radial eigenfunc-
tions Bnq(r) Of cours. e, the term "eigenfunction" here
refers to the radial dependence of the measured oscilla-
tions, rather than to the theory of linear operators.

Figure 3 shows the amplitudes and phases of the radial
eigenfunctions bn, and nb„( nrom laized to unity), ob-
tained from an evolution similar to that of Fig. 2. Also

0

FIG. 2. Contour plots of the z-averaged density n(r, O) at
four times during the I 1 instability. The contours are in in-
crements of 0.6x10 cm ', and the highest four levels are
shaded from gray to black.
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Radius (cm)
FIG. 3. Amplitudes and phases of the measured stable and

unstable eigenfunctions tin, (r) and b'n„(r). Also shown are the
initial hollow density profile no(r) (units 10 cm ') and the in-
itial Ex B drift rotation fs(r) (units 40 kHz).
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In this fit, there is no presumption of exponential growth,
as there is in Eq. (2). The residual is small until late in

the evolution, when nonlinearities or other unstable
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FIG. 4. Amplitude of the unstable mode A„(t)(solid sym-
bols) for four different initial seed amplitudes (units 10
cm '). Open symbols placed at t &0 show the initial ampli-
tude A, of the stable mode.

shown for reference are the density no(r) and the E & B
rotation frequency fF. (r). This fit used data at fifty radii
and eleven times. The standard errors for the eigenfunc-
tions, obtained by presuming the residual arises from
random noise, are shown as error bars at r= 1. Fitting
with three modes would not substantially decrease the
residual.

The eigenfunction 6'n, represents the stable orbit of
the entire hollow plasma column about the cylindrical
axis: The amplitude and phase are well approximated by
bn, (r) rx8np/Br, as predicted by linear theory .This
mode appears to have the same general characteristics
for either monotonic or hollow density profiles, with a
frequency =fE(R )

The unstable mode arises only for density profiles
which are at least partially hollow. The eigenfunction
bn„ is approximately proportional to Bnp/Br inside the
radius r„defined by the maximum of np(r); for r+r„,
there is another contribution with varying phase which

appears to be unrelated to 8np/Br. The unstable-mode
frequency f„equals the maximum of fE(r), to within the
experimental accuracy of + 3% in determining fF(r).
Interestingly, this mode is largely self-shielding: The
calculated electric field arising from the mode is essen-
tially zero outside the plasma.

We can obtain the actual time evolution of the mode
amplitudes, Aq(t), by "projecting" the original data onto
these two eigenfunctions, as

(3)

modes become significant.
Figure 4 shows the magnitude of the mode amplitudes

versus time for four initial seed perturbations in 10-dB
steps. In all cases, A„(t)exhibits what appears to be ex-
ponential growth, followed by nonlinear saturation,
whereas A, (t) is essentially constant. For the smallest
seed, this exponential growth covers more than two de-
cades. The straight lines represent exponential growth
with y„23.3 kHz, and are separated by 10 dB. The
eigenfunctions of Fig. 3 were obtained from the data rep-
resented by the cluster of crossed circles from 40 to 50
ps. Figure 2 was obtained from the evolution represent-
ed by the diamonds.

The initial instability appears to be a linear process, as
evidenced by the parallel growth curves in Fig. 4. Fur-
ther, the mode saturates at a reasonable level: The satu-
ration level of A„-0.3 represents (due to complex con-
jugates) a sinusoidal amplitude of 0.6, or a peak-to-peak
amplitude of 1.2. This results from the difference be-
tween the central minimum (3.6) and the maximum
(5.0) value of np(r).

The instability seems to be mainly a 2D drift effect.
We observe conservation (to reasonable experimental ac-
curacy) of the total number of electrons, the total angu-
lar momentum, the 2D electrostatic energy, and the per-
pendicular temperature. ' The most striking difference
from simple 2D drift dynamics is the variation in the
measured histogram of A(n), defined as the r-8 area A
which has a given density n In inc. ompressible flow,
A(n) does not vary with time. The measured A(n)
varies substantially, often including a 5% increase in the
maximal density. Consequently, moments of A(n) such
as the enstrophy vary substantially also. We do not at
present know how much of this is due to finite-length
effects, due to coarse graining over the area of the colli-
mator hole, or due to nontrivial z dynamics.

The appearance of exponential growth for the unstable
mode is not an artifact of the fitting process of Eqs. (2)
and (3): The exponential growth can be seen directly
from bn(r, t) with no fitting. The small open circles of
Fig. 4 show bn(r, t), which is the maximum magnitude
of bn(r, t) (restricted to r (r„,so as to emphasize the
unstable mode), for the evolution where A„is shown by
solid circles. The small circles are initially somewhat
above the solid circles, because the stable and unstable
modes happen to add in phase. For t & 80 ps, A„&8„
so the superposition matters less, and the bn(r, t) data
agree well with the fit.

We have eliminated a number of eff'ects as possible
causes of the observed exponential instability. First, we
have established that the instability is not a coupling to
the stable l=l, k, =0 diocotron mode. As seen from
Fig. 3, 2, =98„att =0. However, even when we feed-
back damp the stable mode by 20 dB within & period
after t =0, the same exponential instability is observed.
Similarly, we have established that the instability is not a
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coupling to the I 0, k, &0 plasma modes which tend to
be excited by the process of ejection at t =0: Damping
these modes by resistive dissipation in the axial direction
makes no difference in the instability evolution. Next,
we have established that the instability is unaffected by
small angular misalignment (=10 rad) between the
magnetic and cylindrical (electrostatic) axes; this "tilt"
misalignment tends to make I 1, k, ~0 oscillations ap-
pear, but does not aA'ect the instability evolution. Simi-
larly, the instability evolution is independent of the (az-
imuthal) resistances used on the wall sectors for receiv-

ing and transmitting waves. Finally, we note that the in-

stability occurs over a broad range of plasma lengths L~,
although very short plasmas may show no instability for
any I mode. '

In summary, we have observed coexisting stable and
unstable I 1 diocotron modes on partially hollow elec-
tron columns. The unstable mode appears to grow ex-
ponentially over a range of several decades, in contradic-
tion to present 2D fluid theory.
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