
VOLUME 64, NUMBER 6 PHYSICAL REVIEW LETTERS 5 FEBRUARY 1990

Quantum Map for Molecular Vibrations in High-Frequency Fields
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Molecular vibrations in a Morse potential driven by a high-frequency electromagnetic field are de-
scribed by a return map for the energy change within a vibration period and the canonically conjugate
phase angle. Quantizing this dynamical system we study the molecular excitation and dissociation for
initial states in the classically regular and chaotic regions.

PACS numbers: 33.80.Rv, 03.65.Sq

The quantum dynamics of systems which exhibit chaos
in their classical limit has been studied intensively in re-
cent years. The principal example which has been inves-

tigated both experimentally' and theoretically is the
ionization of excited hydrogen atoms by microwave
fields. As another example, to which the present paper
will be devoted, dissociation of diatomic molecules by in-

frared fields has been considered. A convenient way
to model this system is to consider the Hamiltonian of a
Morse oscillator driven by an external periodic field

Hp —,
'

p + —,
' [1 —exp( —x)] —gxcos(cot) .

[We use units where the dissociation energy equals

and the frequency of small oscillations is unity; g is the
amplitude of the electric field. For example, for the HF
molecule in the field of a CO2 laser with an electric field

strength of 0.45 eV/(Bohr radius), we have in these units

g 0.01, co 0.25, lt 0.042.] Solving Hamilton's equa-
tions and the Schrodinger equation corresponding to Eq.
(1), Walker and Preston and later, in a refined way,

Gioggin and Milonni compared the classical and quan-
tum dynamics of this system, concluding that both de-
scriptions agree well except near multiphoton reso-
nances ' and higher-order classical resonances. While
Ref. 5 was restricted to the bound states of the oscillator,
Ref. 7 included the continuum but instead used a spatia1
discretization to solve the Schrodinger equation. In ear-
lier work Leforestier and Wyatt used an optical-
potential approach to describe the decay into the contin-
uum.

In the present paper we apply a new approach to the
quantum probletn posed by (1), which is based on the
construction of a suitable return map and its subsequent
quantization. The method explicitly takes into account
transitions into the continuum in a comparatively simple
fashion. In this way we are able to improve the compar-
ison of the classical and quantum dynamics leading to
dissociation. Elements of our approach were developed

by Casati, Guarneri, and Shepelyansky in their treat-
ment of the hydrogen problem. The general scheme be-
hind the method of quantization was discussed in Ref. 9.
While not exact, the approach is numerically very
efficient and, where it is comparable to earlier work, it

gives an accurate description. In the following we de-
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As the molecular energy ( —coN) over one vibration
period is changed most drastically by the infrared field

when the nuclear distance passes its minimum, the
change effectively occurs via discrete kicks described by
the terms proportional to g in Eq. (2). [Physically this
description is appropriate as long as the energy change
due to a kick, cogf, is large compared to the energy

scribe our method and present results obtained by its im-
plementation.

In order to derive the return map we introduce the ac-
tion and angle variables I,H of the (undriven) Morse os-
cillator and also describe the external field by a pair of
action angle variables N, y. A total, conserved Hamil-
tonian H Hp(I, e,vt)+coN may then be defined. By
suitably choosing the origin of N, we may always assume
0 0. Then —coN is the energy of the oscillator in the
presence of the external field and has the range
& —coN )0. Solving Hp+toN 0 for I = —H(O, N, p)
and using 8 as a new effective time variables measured
in units of vibration periods, 8 (t+Hp)(mod2tr), we can
look upon H as the Harniltonian generating the motion
as measured in this redefined time coordinate. Harn-
ilton's equations then read p; HN, N; —H~, denoting
derivatives by subscripts. These equations are now in-

tegrated over one vibration period ht 2x, assuming that

g is sufficiently small [2trg/co«(1+2coN)'t ] that a
first-order analysis is justified. The analysis proceeds
along the lines given in Ref. 9 and will be presented else-
where. The return map is obtained as'
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(g /2co ) of the free motion in the external field; cf. the
last paper of Ref. 8.] These kicks are superimposed on

the integrable dynamics of —coN and the canonically
conjugate phase p of the external field, described by the
remaining terms in Eq. (2). We took care to maintain
the symmetry p —p, n+1 n of the exact dynamics.

Equations (2) and (3) hold for states below the disso-
ciation threshold, i.e., for —coN & —,

' . However, we
find' that for a single time step the map can be extend-
ed to unbounded states by performing an analytical con-
tinuation to the domain —coN & —,

' . The map (2) is ex-
tended to this regime by the formal replacements, for
—colV & —,',

f (N) —-f (N)-—2x co arctan ( 1+2coN )

'

exp
[1+2~N l

'" (4)
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Poincare cross section of the full dynamics, the
refined Morse map, and the Morse map (from left to right, for
co 1, g 0.01).

and (1+2coN) '
~
1+2coN

~

' . Dissociation during
each step of the map is then taken into account by pro-
jecting the state (in general described by an ensemble of
points) on the bound states coN & —,

—' after the applica-
tion of the map (2)-(4). While Eqs. (2) and (3) are al-
ready sufficient for a classical description of the bound
states, the extension (4) of the map to unbounded states
for a single time step turns out to be indispensable for a
proper quantization (cf. below). Close to the dissocia-
tion threshold —coN —,

' the functions f+ (N) simplify
to f+(N)= —(2x/coexpco) and the map (2)-(4) sim-
plifies correspondingly. We shall refer to the simplified
version as the "Morse map" in analogy to the corre-
sponding "Kepler map" derived for the Kepler potential
in Ref. 8. The full map (2)-(4) we shall refer to as the
"refined Morse map. " In Fig. l the invariant manifolds
of the full return map of the Hamiltonian (1), the
refined Morse map, and the Morse map are compared.
We find good agreement between the numerically con-
structed full return map and the refined Morse map in

the whole range of initial states considered, and with the
Morse map in a broad range below the dissociation
threshold.

Next we proceed to quantize the map (2)-(4). The
quantization is done with a view to the semiclassical lim-

it, which we wish to describe accurately. We quantize in

the p representation by choosing N —ih a/dN+ANp

Here

U(N, y) exp — [f+ (N)cosy&+cosy f+ (N)]
2h

(6)

is unitary, N and p are operators, and the subscripts
—,+ define how U acts on the subspace of bound and
unbound states, respectively. For the Morse map U can
be written down explicitly in the N representation, in
terms of Bessel functions. In order to construct U in the
N representation, for the refined Morse map, we dif-
ferentiate U with respect to g and numerically solve the
resulting first-order diA'erential equation in a sufficiently
large number of N eigenstates, including those from the
unbound subspace, in order to obtain a converged uni-

tary matrix U//. As f~ are pieces of a single analytical
function the subscripts ~ can be dropped in Eq. (6).

P in Eq. (5) denotes projection on the bounded sub-
space; i.e., like in the classical map, the component of the
state which has evolved into the unbounded subspace is
discarded in each time step. We emphasize, however,
that in our numerical construction for the refined Morse
map the operator PUP is strongly influenced by the con-
tinuum [and therefore our analytical continuation of
f (N) to f+(N) is-necessary] which appears in inter-
mediate states. Those excitations to the continuum
which are deexcited to the bound subspace within one vi-
bration period are fully taken into account in PUP.

Finally, Hp in Eq. (5) need only be specified for the
bound subspace. It is diagonal in the N representation
with eigenvalues given by

Hp —1+[1+2coh(l+Np)]'

We now describe our results. In order to test the

I with quantum numbers Ni h(l+Np), l integer. The
parameter No is real, 0 ~ No & l, and must be fixed by
satisfying the condition 0 0 for the initial state. In our
numerical examples below we shall consider free molecu-
lar eigenstates with energy E„(0(E„~—,

' ) as initial
states. Then the quantum number I for the initial state
and No are given, respectively, by the integer and frac-
tional part of —F.„/hco. The quantized map, in the
Schrodinger picture, takes the form

—(inih 'iHOPUP (in/s )Ho
~
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FIG. 2. Dissociation probability P after 100 vibration
periods (upper curve is classical, lower curve is quantum) vs in-
itial molecular energy, and corresponding phase-space struc-
ture. m is the phase-averaged position of the primary reso-
nances and cantori 2+ 2+ y, 3 — 3 —y; Bg is the clas-
sical chaos border estimated from a locally equivalent standard
map; Bg is the phase-averaged position of the last impenetrable
cantorus; B~ is the delocalization border (for co 1, g 0.01,

0.01; the quantum probability is defined for a discrete set
of initial energies, and the continuous curve merely serves as a
guide to the eye).

quantum map we first studied the excitation of the mole-
cule from its ground state for the same parameter values
as used in Refs. 5 and 7 and found good quantitative
agreement. In this case the ground state is in the classi-
cally regular regime and the molecule remains bound
both in the classical and in the quantum description.
Then excited vibrational eigenstates of the molecule were
used as initial states and the resulting classical and quan-
tum dynamics determined by numerical iteration of the
map for a fixed number of vibration periods. The classi-
cal calculations were performed with an ensemble of
1000 initial points of fixed value of N and equidistribut-
ed initial phase y. In Fig. 2 we plot the classical and the
quantum probability of dissociation P after 100 vibration
periods as a function of the initial molecular energy. On
the same scale the phase-space manifolds of the classical
map are also given. The classical molecule is seen to dis-
sociate more easily than the quantized one, in general.
However, the quantum probability displays pronounced
resonances, where states which dissociate relatively easi-
ly'are bracketed by states, separated by a photon energy,
which are comparatively stable. For the parameters
chosen in Fig. 2 the two most pronounced quantum reso-
nances appear at the winding numbers (ratio of field and
oscillator frequencies) 3 and 4. The classical threshold
for the initial value of the oscillator energy where disso-
ciation is first observed coincides with the classical chaos
border (as can be seen clearly by comparing with the
phase-space plot) and it can be estimated from classical
resonance overlap, " or, more precisely, by locally ap-
proximating the Morse map by the standard map ' '

(Bc in Fig. 2). The quantum dissociation threshold is
higher than the classical result; i.e., quantization in-
creases the stability of the molecule. Further computa-
tions performed by us' show that the pronounced quan-
tum resonances seen in Fig. 2 depend on the infrared
field amplitude and generally decrease in strength if the
latter is raised.

In order to understand the overall stabilizing effect of
quantization two hypotheses were explored by us: (i)
stabilization by Anderson-type localization ' ' and (ii)
stabilization by the presence of cantori in the classical
map. ' '

In the classically chaotic region the action variable
N 0 (I +No) undergoes a diffusion process (hl )

((I —(I)) ) DIn whose diffusion constant DI may be
estimated by well-known methods. If Anderson-type lo-
calization of the action variable in the quantum system
occurs, a localization length L h, I aDI appears ' '
where a is of order 1. For the Morse map we estimate,
with a 1, DI 2x g /h co e ". In the presence of lo-
calization, dissociation can only take place from initial
states lo within a localization length from the dissocia-
tion border. The predicted threshold is indicated in Fig.
2 as 8~. We see that in the molecular system the pre-
dicted dissociation threshold roughly separates the region
where complete dissociation occurs within 100 vibration
periods from the region where some (but not all) states
decay on a considerably longer time scale. However,
even in the latter region localization is incomplete at best
and, for some initial states, e.g. , at m 3, completely
destroyed by quantum resonances.

Kolmogorov-Arnol'd-Moser tori in the classical system
are broken into cantori which act as obstacles for the
classical diffusion and may become impenetrable for the
quantum system. ' The phase-averaged position of the
cantori with winding number 2+ y and 3 —

y
[y (1+J5)/2] are indicated in Fig. 2. Allowing for its
deformation towards smaller values of —coN in the real
map, the cantorus with 2+ y is seen to provide a good
quantitative threshold for the first appearance of dissoci-
ation in the quantum system. The action 6W per itera-
tion passing the cantorus at winding number m+ y
can be estimated by available methods ' as 6,W~
=(0.12'/m ) [ln(39.5m g/m e )] ' for the Morse
map, if the scaling variable in the brackets is small. For
the parameter values of Fig. 2 we find 68'q=5X 10 A, ,
68 3 1 . 1 h, but 4W3 might be outside the limits of ap-
plicability of the scaling formula already; furthermore,
the strong dependence of the scaling variable on m
renders the simple version of the scaling formula quanti-
tatively uareliable, and the numbers given for AWE and
6W3 should merely be considered as lower and upper
bounds, respectively. Thus initial states with winding
numbers below the cantorus with m 2+y should be
stable against dissociation, in good agreement with our
results.

To summarize, we have presented a new method for
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the efficient investigation of molecular vibrations in in-

frared fields, and we tested the method against results
obtained earlier by different approaches. We then ob-
tained new results for the dissociation probability of ini-

tial states in the classically regular and chaotic regimes.
On the average a general stabilizing effect of quantiza-
tion on the molecule was found —however, superimposed
by pronounced quantum resonances across which the dis-
sociation probability varies dramatically. Experimental-
ly these resonances should be seen by varying the initial
state for fixed field amplitude. However, one has to keep
in mind that experimentally time is measured in units of
field cycles while the theory uses vibration periods in-

stead. The sharp classical dissociation threshold agrees
with the classical chaos border; its quantum-mechanical
increase was found to be in reasonable agreement with
the mechanism of stabilization by cantori. Again, this
result may be tested experimentally. Initial states above
this quantum threshold dissociate, but, except near reso-
nances, at a rate smaller than the classical one. The lo-
calization length L estimated for this regime provides a
reasonable estimate for the distance from the continuum
below which the dissociation rate is essentially the classi-
cal one.
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