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Algebraic Scattering Theory for Heavy Ions
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Algebraic potentials from SO{3,1) and SO{3,2) representations of scattering functions are deduced by
matching to scattering functions obtained by fitting ' C-' C elastic-scattering diff'erential cross sections.
Their variations with energy suggest a simple mapping between algebraic and coordinate-space interac-
tions.
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Recent studies' have introduced techniques for defining S functions for elastic scattering from consideration of
dynamical symmetry groups and their asymptotic properties. In particular the groups SO(3,N) for N 1 and 2 yield S
functions that equate to scattering from modified Coulomb potentials, and therefore these algebraic models are ap-

propriate for use in the analysis of collisions between heavy ions. The models are valid even at high energies where the

strong absorption model has had success since most data reflect properties of the interaction in a sensitive radial region

in the proximity of the strong-absorption radius, and where the potential strengths are characteristically small in com-

parison with the Coulomb field strength. It has been shown that the presence of a dynamical symmetry implies a par-
ticular functional form for the S matrix, defining thereby "algebraic potentials" v((k) and w((k) by

r(l+ I+tv, (l ))S((k), for SO(3, 1),
I I+1 —iv( k

I ([I+2+ w((k) +if(k) ]/2) I ([I+ 1 —w((k) +if(k) ]/2)
S,(k)- , for SO(3,2),

I ([I+2+w((k) —if(k)l/2)I ([i+ I —w((k) —if(k)]/2)

where f(k) is the Coulomb parameter, and v, w are func-
tions of I and k. It is hoped that the above functional
forms for the elastic scattering can be generalized
through choice of v and ~ to encompass strong-inter-
action and -absorptive scattering processes when, never-

theless, those processes remain dominated by the
Coulomb force. Although developed for unitary S func-
tions, application to absorptive interaction problems,
as in the case of heavy-ion scattering, can be approx-
imated' by simply allowing the algebraic potentials to be
complex with the conditions Im[v( (k)] (0 and
1m[w('(k)] & 0.

As has been noted, it is not clear just what would be
the underlying physical model in the Schrodinger picture
as the algebraic approach is formulated at the level of
the S functions. In order to find a potential that, insert-
ed into a Schrodinger equation, produces the same S
functions (and so cross sections) one needs to solve the
inverse-scattering problem at fixed energy. For heavy-
ion interactions, that inverse problem has been studied
recently, with varying degrees of success and validity.
In some cases, ' the potentials obtained by inversion
showed strong fluctuations with range which might cast
doubts upon their physical relevance. Such fluctuations
can be a consequence of the ill-posedness of the inverse-

scattering problem. ' For energies 360-2400 MeV with
' C on ' C, however, the WKB approximation method
has been found to be both stable and accurate in

defining potentials to small radii well inside the sensitive
radial region. No unphysical fluctuations resulted and in

all cases the inverted and best-fit optical-model poten-
tials were very similar in the sensitive region. Semiclas-
sical studies of the inverse-scattering problem have also
been made ' using an eikonal approximation to relate
forms of the algebraic potentials in I space to asymptotic
forms of the interaction in coordinate space. Both stud-
ies, however, used parametrized forms for v((k) and
w((k) that are based only upon the assumption of a simi-
larity in shape between the strong-absorption S function
and the algebraic potentials.

In this study we first consider strong-interaction S
functions obtained from a "best-fit" optical-potential
study of the 1016-MeV ' C-on- ' C elastic-scattering
data. " We then fit the SO(3,2) S-function form to
those best-fit results and obtain the algebraic potential
w((k). The process is repeated using a family of optical
potentials obtained by scaling the overall strengths of the
real and imaginary parts of that best-fit optical potential
to assess the sensitivity of wl to features of the optical
potential.

The real and imaginary S functions obtained from
those optical-model potential calculations are shown on
the left and right of Fig. 1, respectively. These optical-
potential calculations were made using the code ECIS88 '

and the scattering data at 1016 MeV were used to deter-
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FIG. 2. Algebraic potential w functions.

mined (by a g minimization search) that the basic po-
tential parameters V and $Y are 153 and 31 MeV, re-
spectively. The associated S functions are displayed by
the continuous curves in Fig. 1 that do not have the tag
"S." The continuous curves with the tag S are the S-
function values obtained using the "ersatz" parameter
values of 16 MeV for both V and 8'. For comparison we

have calculated S functions using (nuclear) potential
strengths —,

' (short-dashed curves), —,
' (long-dashed

curves), and —,
' (dot-dashed curves) of the best-fit values.

Clearly, scaling the potential leads to a family of S func-
tions that vary in form only for small values of l. It is
characteristic of standard Woods-Saxon potentials for
' C-on-' C scattering that the S functions at low I oscil-
late and are small in magnitude. Those characteristics
make it impossible to match those S functions to the
algebraic, SO(3,2) form at such angular momenta. Con-
sequently the wi(k) functions shown in Fig. 2 terminate
at minimum I values that equate approximately to those
at which the Re[SI(k)] vanish. Nevertheless, as the nu-

clear potentials are scaled down in strength, the S func-
tions lead to a family of w~(k) curves. With a major
change to the relative strengths of V and W (as given by
the ersatz set) the wi(k) functions obtained vary quite
markedly from the others. Thus the S functions as given

by the data, by optical-potential analysis (or inversion),
lead to a unique potential at least in the sensitive region
and, for the current circumstances at least, to a unique
wi(k) function in the algebraic theory. Clearly, data on
this test reaction need to be obtained at a number of in-

termediate energies before one can draw any strong con-
clusion about a relationship between coordinate-space
and algebraic potentials. It would seem, however, that
the general shape of the wi (k) reflects the relative
strengths of the real and imaginary parts of the scatter-
ing potential while the location of that shape with I
reflects the overall strength of the potential in relation-
ship to the projectile energy.

One need not start with an optical-model potential as

the data at 1016 MeV, as well as at 360, 1449, and 2400
MeV from ' C elastically scattering off of ' C, are well
represented by a strong-absorption model (SAM) of
scattering, with associated S functions that not only are
smoothly varying functions of I but also suitable for in-
version. Those SAM S functions can be obtained from
fits' to ' C-' C elastic-scattering cross sections using a
McIntyre five-parameter function. With the possible ex-
ception of the 1449-MeV results, the associated cross
sections are excellent fits to measured data. For the en-
ergies in increasing order we note that the S functions
for I values less than 20, 30, 30, and 40 are of little or no
significance in fitting the current measured data. Conse-
quently any smooth continuation may be used, or their
values simply set equal to zero.

These properties of the S functions are true irrespec-
tive of any choice of model calculation, but in the con-
text of our studies they simply set lower limits to our
ability to match to the algebraic-model SO(3,2) form of
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FIG. 3. Algebraic potential v functions for ' C-' C scatter-
ing.
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TA&LE 1. The exponent coefficients a(k).
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FIG. 4. Algebraic potential w functions for ' C-' C scatter-
ing.

the S functions and so extract values of w((k). No such

problems were found in matching the SO(3,1) form «
get values for v((k). The results of that SO(3,1) form
matching at each energy, using the S functions of Fig. 1,
are shown in Fig. 3. The real and imaginary parts of the
v((k) are shown on the left and right of this figure, re-

spectively. Clearly there is a characteristic form for
these functions. The real parts are positive definite and

monotonically decreasing with I (rapidly so for small I),
awhile the imaginary parts are all negative definite, being
largest at small I values and monotonically diminishing
toward zero at high I. The decline to zero of v((k) with

high I values slows with increasing energy. The 1016-
MeV results are atypical to the extent that the real and

imaginary parts of v((k) at that energy for most I values
are larger in size than any of those at the other three en-

ergies.
The real and imaginary parts of the w((k) functions

extracted by matching the SO(3,2) algebraic S-function
forms to those of the strong-absorption model are

displayed in Fig. 4. The 360-, 1016-, 1449-, and 2400-
MeV results are identified by the continuous, long-

dashed, dash-dotted, and short-dashed curves, respective-

ly. Again a family form is evident, albeit now the results

do not extend to very small I values. To map the
SO(3,2) form to an S function of the order of 0. 1 in

magnitude places w((k) near the negative real axis with

the real part approaching a large (negative) integer, for

which arguments I functions diverge. Recall, however,
the S functions for such small values of I are of no conse-
quence so far as current data are concerned. Neverthe-
less, the range of I values for which the w((k) can be
defined is sufficient to make trends obvious. From essen-
tially a constant value at small I (both real and imagi-
nary parts) the real part decreases monotonically and
sharply before approximating an exponential at high I
values. The imaginary part has a "well-like" shape with
an exponential tail at high I values. There is coinciden-
tally more nonlinear variation with energy in these w((k)
functions than in the v((k) set. The real part of the
1016-MeV and the imaginary part of the 1449-MeV
algebraic potentials w((k) seem anomalous. Semiloga-
rithmic plots of both v((k) and w((k) reveal that they
decrease exponentially and asymptotically with I as

v((k) [and w((k)] exp[ —a(k)l] . (3)

The values of the exponent coefficient a(k) are listed
in Table I from which it is evident that, with the 1016-
MeV values excepted, there seems to be a smooth mono-
tonic trend to the character of the asymptotic behavior of
the algebraic potentials with energy. The current data
are too sparse as yet to be useful in defining that trend,
or even to claim with certainty that the 1016-MeV
values are anomalous.

An estimate of the appropriate asymptotic form (in I)
of the algebraic potentials from the SO(3, 1) model can
be inferred by equivalence to a Schrodinger picture.
With vR, vi designating the real and imaginary parts of
each v((k), Eq. (1) enables us to identify the real and
imaginary parts of the phase shifts at each value of k as
b( and 8t, respectively, per

r(I +1 —v(+ ivn)
S((k) exp(2i8() r(l + 1+v( —iv(t )

giving

R I+1+n 2(l + 1+n)v((
8( = —, v(t [y(l + 1 —v() + y(l + 1 + v( )]+ v(( g z z

—g 6„+arctan
n o(l + 1+-n) —v( n o- (I+1+n) —v(( —v(

where y are digamma functions and h,„denote the + n changes in phase which may exist for small values of /. For
values of I very much greater than l v(t l and l v( (, there are no problems of discontinuities in b'( nor do any resonances
exist that make either summation in Eq. (5) diverge so that 6("(k) v((ln(I +1). Thus, from the Schrodinger picture
we may extract candidate forms for vR by calculating phase shifts in the first Born approximation. For a Yukawa po-
tential, vR behaves asymptotically as the exponential exp[ —(I+1)p/k], where p is the range of the Yukawa. For a
Gaussian interaction, an exponential asymptote is also predicted. With the SO(3,2) algebra, however, it is not possible
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to extract asymptotic information on wi(k), as, in the large-l limit, only the Coulomb-interaction values remain. The
very form of Eq. (2) implies Coulomb asymptotics. As a model Ansatz, however, and based upon our results derived

using SAM, it seem reasonable to fit vi(k) and wi(k) with similar model forms, approximating the exponential part as

exp[ —a(k)l], with a(k) a simple function of k (JE ) such as

a(k) co+c ~E ' +c~E 'I

Using the data in Table I (excluding the 1016-MeV values) gives (for E in MeV)

0.05+ 2.29(E) 'i —4 x 10 (E)', Revi (k),

,
—0.18+7.0(E) ' +2x10 (E) ' Imvi(k),

and

0.18 —1.2(E) ' —2.6x 10 (E) ' 2 Rew (k),
a(k) - 1

' —0.18+1.15(E) ' —2x 10 (E) ', Imwi(k).

(6)

(7)

We stress, however, that the current data are too
sparse for any strong confidence to be given to the actual
coefficients c„ in the above, although it does seem clear
that a simple functional form is appropriate and from
that the long-range potential behavior in coordinate
space may be inferred.

But there are characteristics of these algebraic poten-
tials other than the asymptotic tails that have a simple
functional l dependence. Of these the most relevant are
the peak values in the imaginary parts of wi(k) which

occur at values given by

lp ———6+ 1.77JE, (9)
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as they are comparable to the classical grazing values, lg,
at which the real parts of the S matrices have values of
0.5. It is at and beyond those grazing values that asymp-
totic conditions may have significance. With the strong-
absorption models the S functions for l &lg have only
minor contributions in the calculated cross sections.

In summary, there appears to be a family characteris-
tic between the optical-model potentials of heavy-ion
scattering (in strong-absorption situations) and the alge-
braic potentials as determined by either the SO(3, 1) or
the SO(3,2) group representations of S functions. The
"potential forms" required to fit data using the algebraic
models exhibit complex behavior for small l ( & ls) but
appear to be asymptotic to forms consistent with those
predicted by simple potential models.
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