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Using partial-wave unitarity and the observed density of the Universe, we show that a stable elementa-
ry particle which was once in thermal equilibrium cannot have a mass greater than 340 TeV. An ex-
tended object which was once in thermal equilibrium cannot have a radius less than 7.5x 10 ' fm. A
lower limit to the relic abundance of such particles is also found.

PACS numbers: 98.80.Cq, 11.80.Et

The idea that the dark matter known to exist in galac-
tic halos consists of some, as yet undiscovered, stable
massive particle has received a great deal of attention in

recent years. Dozens of particle candidates have been
suggested and new ones are constantly being proposed.
Most of these dark-matter candidates have relic abun-
dances which are calculated in the "Lee-Weinberg"
manner and model parameters are typically adjusted to
allow their density today to be near critical density,
Ax= l. Unfortunately, as a result of the plethora of
models and limited experimental information, the prop-
erties of consistent dark-matter candidates are, to a large
extent, unconstrained, thereby hindering the verification
or exclusion of the particle solution to the dark-matter
problem. Clearly, "model-independent" constraints are
desirable. In this Letter we present a model-independent
constraint on the mass of elementary-particle dark-
matter candidates. For almost any such particle which
was once in thermal equilibrium, partial-wave unitarity
of the 5 matrix bounds the annihilation cross section in

the early Universe, which in turn bounds the relic abun-
dance and the mass of the particle. In general, we find

that stable elementary particles with masses greater than
around 340 TeV are very likely excluded. Extended ob-
jects' with radii less than 7.5x10 fm are also very
likely excluded. While the mass upper limit we find is
not rigorous and rather high, we still feel it may be of
some interest because of its general nature.

The relic abundance of a particle species L which was
once in thermal equilibrium is determined by its total
thermally averaged annihilation cross section (a(XX
all)v„~) at freezeout. At high temperatures the number
density of L's is roughly the same as the number density
of photons, but as the temperature drops below the mass
of the X, their number density drops exponentially. This
continues until the total annihilation cross section is no
longer large enough to maintain equilibrium and the X
number density then "freezes out. " The number density

xf lnB —(n+ —,
' )lnlnB, (2)

where B 0.038gmp~mx(m „~)'/v g and g is the number
of degrees of freedom of the X particle. Typically
xf = 25 corresponding to v„~/4 = —,', at freeze out.
Please note that v„~ is not really a velocity, but is related
to the flux factor. It is defined as v„~=2v, and so
0( v,',~/4( I.

From Eq. (1) we see that if (m „~)f&& 3 x 10
cm /sec, then Qxh ))1, which would be inconsistent
with the "observation, " Qt, th ~ 1, obtained from the
age of the Universe. Any particle model which predicts
an annihilation cross section smaller than this critical
value at v„~/4= ~', is therefore inconsistent with cos-

mology. %'e will now show that partial-wave unitarity
provides a maximum possible cross section and therefore
a minimum possible Qzh . Extremely massive elemen-

today is given roughly by

n h'- 1.07x 10 (n+1)x"+' GeVf" '

X ~/z t
ge m p](m re[)f

3x10 cm /sec
( mp ()eI

where Qx px/p„;, is the present average density of X's
divided by the critical density, &

~ h ~ 1 is the Hubble
constant in units of 100 km/sec Mpc, xf mx/Tf, Tf is

the freezeout temperature, ge, = 107 is the effective
number of degrees of freedom at Tf, and mph 1.22
~10"GeV.

Since the XX annihilations at freezeout occur at non-

relativistic velocities (v = —, «1), one can expand the
cross section in powers of v —= v„~/4 and keep only the
first (or first two) terms. In thermal averaging one re-
places (v„~) by 6/xf and so in Eq. (1) the cross section is

written (m|„~) (mi„~)'x ", where n parameterizes the
dependence of the cross section on x. The freezeout tem-
perature is given roughly by
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tary particles and very small extended objects violate
these bounds and therefore are inconsistent with cosmol-

ogy.
Consider the process a+b c+d and the scattering

matrix

(f ISIi) =(f Ii)+i(2') iJ (Pg P—)(f I TIi), (3)

SO OJ V rel ( (OJ )mex V rel~ Where

4jr(2J+ 1)
(OJ )maxvrel 2,mX &' rel

3x 10 (2J+1)cm'/sec

[m /(1TeV)]
(10)

TJ —TJ =2iTJpTJ .

Defining SJ=1+2ip' TJp', we see that partial-wave
unitarity can also be written SJSJ 1 ort

ISelJI +Z IS~fJI'=I
f

(6)

where S,l J stands for the elastic channel, i =f. The next

step is to define S,i J=gJe ', where BJ is a real phase
shift and riJ is an inelasticity factor, 0( jlJ ( 1. Then
IS,l JI riJ and gf IS;~fJ I

1
—riJ. Finally, using

Tel J (Sel J 1 )/2ip and Tfrxj J Sfrej J/2i (p;pf )
and the standard formula for the unpolarized cross sec-
tion in terms of partial waves o =goJ, where

4jr(2J+ 1) Pf
(2 + i)(2 + i)

we find the result of Pilkuhn

2J+ 1 pf
(2 + )(2 + )

~(2J+ i)(i —~2)

Pi

Here cr, J is the "reaction" cross section, that is, the total
cross section minus the elastic piece. It has a maximum
when gJ =0, so we conclude that

O'J(a+b c+d) ~ jr(2J+1)/p; .

In the early Universe,

2 ~ 2 2mx—
4(l v, l/4)

2, 2mx &' rel

~here P, =p, +pb and Pf =p, +pd. The T matrix can
be expanded in partial waves using the helicity formal-
ism, 4

(kr) d I T(s, 0) I)l.,xj, )

=8jrs' 'e"" "g (2J+1)d~) (8)G.,kd I TJ(s) I),irb),
J

(4)

where A.„.. . , Xd are the helicities of particles a, . . . , d,
A. =X, —Xb, X'=X, —kd, s is the Mandelstam variable,
0 =(8,() is the center-of-mass scattering angle, and d~i
are the Wigner functions.

Using matrix notation (1r,,kd I TJ (s) I kebab) (TJ ) rf
and pl, =diag(pl, p2, . . . ), where pj, is the center-of-mass
three-momentum of particle system i, f, etc. , partial-
wave unitarity of the S matrix can be written

In order to apply the limits of Eq. (10) to the annihila-
tion in the early Universe we need to determine which

partial waves contribute. After summing over helicities,
the angular dependence, cosO, which indicates the partial
wave, enters the cross section only through the Mandel-
stam variable

t =m, +m, . —2E,E, +2p,p, cos8

=m, +m, . —2E,E, +2p, c so& mx„v/l2

+O(v,', /4) .

So there is a factor of v„,i appearing with every factor of
cos8. In the expansion of the annihilation cross section
in powers of v „l/4 = i', , the lowest-order term

O((v„,l/4) ) therefore has no angular dependence and

must be a J=0 partial wave. The J=1 partial wave is

smaller by a factor v„l/4, and the higher partial waves

are further suppressed. In fact, since partial-wave uni-

tarity must hold for any value of v„l/4, and when v„l/4
increases, the maximum cross section, Eq. (10), de-

creases, the J 0 bound, taken when v„l/4= —,', , is not

as stringent as possible. The J=1 maximum cross sec-
tion also decreases for larger v„l/4, and more important-

ly, the term in the actual cross section of order v„l/4 in-

creases. If the J=1 bound is satisfied for a larger value
of v„l/4, for instance v„l/4= 2, then the J=l partial
wave is below the bound by a factor of 8 =0.04 by
freezeout. We conclude that it is more than adequate to
use only the J 0 partial wave in finding a bound.

Now we use Eqs. (1), (2), and (10) to bound Qxh
and mx. Including only the n 0 part of the cross sec-
tion and replacing v„,l by (6/xf) ', we find that

Oxh ~ 1.7 && 10 Jxy[mx/(I TeV)] (i2)

for a Majorana fermion with g =2. For a Dirac fermion,
Axh is a factor of 2 larger. Now using Oxh ~ 1, we

find the mass limit

mx ~ 340 TeV,

and xf =28. Equation (13) was found for a Majorana
fermion. The limit for a scalar particle is similar, while

for a Dirac fermion it is about a factor of J2 smaller,
that is, mx( 240 TeV. This is the main result of this
Letter.

Another, more conservative, way of finding the mass
bound is to assume that the cross section Eq. (10) holds

throughout the period of annihilation and freezeout. In
this case, the v,,i' factor aA'ects the thermal averaging
and the integration from freezeout to today. The ther-
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mally averaged maximum cross section becomes

4z(2J+ 1) x '

&(oJ),„v„))=
m~ tr

(i 4)

' 2

2J+1 1 TeV
(is)

The freezeout temperature is the same as before with
&cxv„~)' multiplied by a factor of (6/tr)' . [We set
n = —

—,
'

in Eq. (2), both now and before, since the xf'

here is just an algebraic factor. ] Using these formulas,
the mass limit becomes m~ & 550 TeV. This is probably
an overly conservative bound since one does not expect
m~„~cx: v,,~

for annihilation channels in a nonrelativistic
expansion.

However, we do not claim that the derivation leading
to Eq. (13) is rigorous, or that exceptions cannot occur.
For example, elastic scattering via t-channel exchange of
a massless particle gives rise to a term in the matrix ele-
ment proportional to t ' cx: v,,~ (1 —cos8) '. Naively
expanding this would suggest that all partial waves con-
tribute to the term of lowest order in v„~/4. The prob-
lem, in this case, is that we are outside the Lehmann el-

lipse of convergence, and the partial-wave expansion is

not valid. Fortunately, in annihilation, the mass of the
annihilation product must be less than m~, and the
partial-wave expansion converges, giving nicely the re-
sults we claim above. Another possible exception, which

we do not consider very likely, is that the coefficients of
the partial-wave expansion contain factors of
(s —4m&) 'cx:v,,~, in just such a way as to cancel the

v„l factors associated with the cos 8 factors. For elastic
scattering, it can be proved that this cannot occur (Ref.
S, p. 291), but we have been unable to complete the
proof for the inelastic case. This may be related to the
possibility of s-channel poles, which can cause another
possible exception to our limit. A factor of (s —m; )
with m; =2m~, will give an additional factor of v,,~, in

which case partial waves up to J =2 need to be included
in our maximum cross section, and the mass limit weak-

ens. However, we feel that such a pole is unlikely. It re-

quires not only an exchange particle of precisely twice
the mass of the L, but also that the exchange particle be
nearly stable. The width of the exchange particle will

dominate the pole unless it is very small, and since the
exchanged particle is more massive than the X, and has
decay channels into lighter particles, we consider this
possibility remote.

We note that the mass limit, Eq. (13), involves a mass
somewhat higher than typically considered in particle-
dark-matter model building. But since the bound is

model independent we feel it may be of some use. We
can immediately apply it to candidates which appear in

and the relic abundance is given by Eq. (1), with n
1

2

the literature. For example, Brahm and Hall have re-
cently found that SU(2)-singlet fermions with an addi-
tional U(1)' symmetry make suitable dark-matter candi-
dates as long as their mass does not exceed 40 TeV. A
cosmological upper bound on the mass of another dark-
matter candidate, the neutralino, has also been recently
found. We believe that both of these mass limits are
examples of the unitarity mass limit, Eq. (13).

One may also consider applying the mass limit to the
"original" cold-dark-matter candidate, the Dirac neutri-
no. Dolgov and Zeldovich claimed a range of neutrino
masses, 3 GeV &m„& 3 TeV, as being cosmologically
acceptable. Their upper bound, consistent with ours, was
based on neutrino annihilation into fermions through Z-
boson exchange whose cross section is proportional to
m„ in the high-mass limit. However, Enqvist, Kainu-
lainen, and Maalampi correctly noted that the 8'+8'
channels, among others, open up for very massive neutri-
nos, and that these new channels dominate the cross sec-
tion in the high-mass limit. In fact, they claimed that
because the matrix element keeps growing as m, in-

creases, there is no upper limit from cosmology on Dirac
neutrino masses. This claim is at variance with our re-
sult for Dirac fermions. We believe that the solution'
to this apparent paradox is that as m, ~, the neutrino
Yukawa coupling becomes large and the perturbative
calculation of Enqvist, Kainulainen, and Maalampi is

not applicable. In fact, by using unitarity to bound the
largest eigenvalue of the scattering matrix, Chanowitz,
Furman, and Hinchliff'e" showed that the breakdown of
perturbation theory occurs at around m, = 1 TeV, con-
sistent with, but far below, the limit we set. Above this
mass we enter murky waters and it is not clear that the
neutrino is a viable dark matter candidate or that it
would remain a "neutrino. " The breakdown of perturba-
tion theory suggests that it becomes "strongly interact-
ing" and would not exist as a free, stable state. If, on the
other hand, the neutrino for some reason (unknown to
us) stays "elementary, " we argue that our limit applies,
giving an upper limit on the neutrino mass from cosmol-

ogy.
Finally, we should comment on the applicability of

these bounds to stable extended objects, ' should such
states exist. For these objects, higher partial waves will

generally contribute to the nonrelativistic cross section,
and the cosmological mass bound, Eq. (13) does not ap-

ply; however, partial-wave unitarity may still be used to
limit the total annihilation cross section, and cosmology
provides a constraint on the size of such objects. Consid-
er an extended object with spin 0 and radius RL. The
highest partial wave that can contribute to the particle-
antiparticle collision is roughly J „. „=2m~v„,lR+, result-
ing in a maximum total cross section,

4 max

(ov„i),. „=
2 g (2J+1)= 16ttRgv„i, (16)

XV rel
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4 times the geometric cross section. Using Eqs. (1), (2),
and (16), we can now bound Qxh and R». We find

that

Xf4x 10 is 3/r.

n~h
[Rx/(I fm)l' '

which leads to the bound

Rx ~ 7.5 x 10 fm .

(i 7)

(i8)

Here we used xf 27 which was obtained from Eq. (2)
using trtx-1000 TeV; the radius limit, Eq. (18), varies
only logarithmically with m~. The limit for spin- 2 par-
ticles is more stringent by a factor of v 2.

We point out that Eq. (16) is valid only if Jm, „»1.
On the other hand, if J .,„«1,the cross section is bound

by Eq. (9) with J 0. Since freezeout occurs when

v„i ———,', Eq. (18) is reliable only when Rx» I/mx,
while an object with Rx«1/mx must be considered
pointlike and its mass limited by Eq. (13). Furthermore,
we note that there is no major discontinuity in the over-
lap region, Rx- I/mx, since the mass limit for pointlike
particles, Eq. (13), is very nearly that which we would
have obtained from the radius limit, Eq. (18), had we
used the Compton wavelength of the particle for Rx.

Of course, if some process such as a quark-hadron or
electroweak phase transition, out-of-equilibrium decay of
a massive particle, or inflation produces a significant
amount of entropy after freezeout, the relic abundance is
diluted and our limits are weakened accordingly. Never-
theless, although our derivation is not rigorous, and ex-
ceptions may exist, we believe that the limit on mass, Eq.
(13), radius, Eq. (18), and relic abundance, Eq. (12), is
of great interest and applies to many (if not most) dark-
matter candidates.
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