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We describe some novel effects generated by the gravitational Chern-Simons term similar to those in-
duced by its electromagnetic counterpart. In particular, a structureless particle source generates a gravi-
magnetic field. Conversely, it causes a spinning source to contribute to the static Newtonian potential,
thereby violating the equivalence principle; the potential can even become repulsive.

PACS numbers: 04.60.+n

The generation of spin in a structureless charged parti-
cle by coupling it to the electromagnetic Chern-Simons
term (CST) in three spacetime dimensions is by now
well understood. This phenomenon, through the associ-
ated change of statistics, may even by physically relevant
to planar-physics models of high-7, superconductivity
(see, for example, Ref. 1, where earlier references are
also given). We show here that the gravitational CST
has similar effects: A structureless point mass coupled to
it generates a gravimagnetic self-field. In each case, a
magnetic field can arise because there are transverse cir-
cularly symmetric vectors in two-space. We will also ex-
hibit another common consequence of CST coupling
which is the converse of the first: Static vectorial
sources, namely dipole current and angular momentum
density, respectively, generate Coulomb and Newtonian
fields. This represents a violation of the equivalence
principle in that inertial and gravitational mass are no
longer equal (the latter can even become negative) with
a similar implication for charge in the electromagnetic
case.

There is also one important difference between the two
theories: The gravitational CST is of third-derivative
order—one higher than that of the conventional Einstein
term, whereas the electromagnetic CST is of first order.
Hence, in a derivative expansion of the matter-induced
effective action, one can neglect the Maxwell term with
respect to the CST, while the gravitational expansion
will generally be dominated by the Einstein term, the
CST representing a (parity violating) correction. (Of
course, the dominance of the respective terms in the re-

sulting field equations depends on whether one considers
short- or long-range consequences.) One will therefore
have to consider the two terms together here; this is to-
pologically massive gravity.? Also, because the gravita-
tional CST alone is conformally invariant, it can only
couple to a traceless stress tensor such as that of a null
particle. To pursue the massive-point-particle analogy
we must in any case include the Einstein term to provide
explicit conformal-symmetry breaking. For comparison
with the Abelian vector model we will consider only the
Abelian, linearized, approximation; this should be
reasonable in eventual physical applications. The full
nonlinear theory, to which we hope to return, will (unlike
pure D =3 Einstein theory®) be more complicated due to
self-energy effects.

Vector CST.— We first briefly review the electromag-
netic case, slightly generalized to include the Maxwell
term for later comparison with gravity. A charged point
particle is minimally coupled to the vector potential A,.
The field strength is determined by the field equations>*

0, F* +pe" P Ag=—j", (1a)
the corresponding action being
I= [ d'x(= £ FA+ £ pe"4,0,45+ A,/)

+4 [ mitar. (1b)

Here u has dimension L ~', while charge has the same
dimension as A* ~L ~'/2, a different convention from the
usual anyon one. Our signature is (—++),
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€"'2=+4+1=¢'2. Consider a circularly symmetric static
point current j with

j'=es(r), j'=ge"9;6%(r), (2)

where we have included a transverse spatial dipole
current of strength g. We use gauges which respect the
circular and time-invariance symmetries of the source,

Ai=€e";V(r)+0,A(r), Ao=Ao(r). (3)

The longitudinal potential 9;A is irrelevant and remains
undetermined by (1). The field equations (1) reduce to

Vi(Ag+uV) =es*(r), (4a)

€9,[VV+uAdo+gsi(r)]1 =0. (4b)
The Coulomb and Yukawa Green’s functions

—VIC=8(r), (=V+u))Y(r)=5*),  (5a)
are

2rC=—Inr, 2rnY=Ko(ur). (5b)

The Bessel function Ko(x) behaves as —Inx at the origin
and as x ~'/2e ~¥ asymptotically. In terms of these, (4)
is solved by

uV=—eC+(e+gu)Y, Ao=—(e+gu)Y. (6)

The pure CST model without a Maxwell term is just the
large-u limit of (1), and the corresponding solution there
is

V=—e/uC(r), Ao=—g/us*(r). @

The main effect of dropping of the Maxwell term is
that A4, does not propagate; the (dual) field strength be-
comes proportional to the current and is therefore
confined to regions containing the sources, just as there is
no curvature outside the 7T,v sources in D =3 Einstein
gravity. Even in this limit, however, the spatial current
has given rise to a nonvanishing Coulomb potential 4¢ in
the interior, j'#0, region. In the extended model’s solu-
tion (6), this electric field (now of finite range) has
strength proportional to e +gu, so that the current con-
tributes to the static electric charge felt by an external
test charge; recall that a minimally coupled point charge
moves according to the Lorentz force law irrespective of
the gauge field’s action. The asymptotic field strength,
on the other hand, is purely magnetic and is proportional
to e only. Thus the “equivalence” between the electric
charges defined by the flux from the Gauss law (4a) and
by the “Coulomb” force no longer holds, with or without
the Maxwell term.

In pure CST theory, the accompanying alteration of
statistics, described by the phase change in any circuit
about the particle, is proportional to

—eﬁA-dl =e’/u.
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These results remain valid asymptotically, although
modified at finite distance, when the Maxwell term is in-
cluded. For example, sufficiently close to the particle,
where Coulomb and Yukawa potentials coincide, a struc-
tureless particle (g=0) shows no phase anomaly. Curi-
ously, when the charges are “turned” to have e +gu =0,
the two models have the same exterior solution; the
“twist” generated by the CST in the extended model has
canceled that present in j', and the net result is the same
as having a pure charge coupled to CST alone. Asymp-
totically, the lower-derivative term in the gauge field
dominates. In this respect (as well as in having a field-
source equality) we will see that the Einstein term alone
in gravity is like the CST alone in electromagnetism.

Gravitational CST.—We have noted that the ap-
propriate gravitational model incorporating a CST must
include the Einstein term as well, both because the latter
is of lower derivative order and because the CST alone
can only couple to sources with vanishing T, but not to
massive particles. (The pure CST model coupled to a
lightlike particle will be treated elsewhere. In that
theory, spacetime is locally conformally flat except on
the null geodesic where the conformal curvature is con-
centrated.) The field equations of topologically massive
gravity are’

Et=—gGl+pu~'Cl=—x’Tt,
(8)
Ct/‘ EfuaﬂDa(Rﬂv— ;—gﬂvR) .

Unlike pure Einstein gravity in D =3, whose action can
have either sign,3 this theory is dynamical, and the
overall sign of its action is fixed relative to that of matter
in order for it to be nonghost. This implies that the sign
of the Einstein term, i.e., of k2, must be opposite to the
one in D=4 gravity, which leads to the negative
coefficient of T"=8Ima/8g,, in (8). We shall also see
that the asymptotic limit of our solutions is that of Ein-
stein theory essentially because the differences due to C¥
depend on ur, and Einstein theory is the u— oo limit of
our model. We will discuss below the significance of the
asymptotic metric with the sign required here. The di-
mension conventions here are that u~L ~! and
x2~M ! is not necessarily related to the D =4 Einstein
constant. The Cotton (conformal) tensor density C¥ is
identically traceless, symmetric, conserved and invariant
under a local rescaling of the metric. The system (8) is
also different from Einstein gravity in that, like the elec-
trodynamics of (1), it can have nonvanishing curvature
(field strength) outside the sources as well.

We now solve the linearized version of (8) for a time-
independent circularly symmetric source. For conveni-
ence (linearized curvature being gauge invariant), we
gauge fix the potential xh,,=g,,—n,, to display these
symmetries, drop the (irrelevant) longitudinal part of
hoi, and choose conformal spatial gauge:

ho,-=e,-,-6jW(r), h,-,-=¢(r)8,j, h()oEn(r). 9)
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All three physical components (W, ¢,n) will then be determined. Consider a stationary localized particle,

Td=—ms*(r), T;=0,

Th=—+0e79,6%(t) =c62(r)e”d;1nr .

10

The momentum density is that of a stationary (f Thd 2x =0) spinning (f ¢/x'T)d*r =) particle.
With the convention R{,3 ~ +9,I'},, so that R, s~ — ;—thﬁ, the linearized Cotton and Einstein tensors for the metric

(9) are
CO=1V'W, Ch=—15;€"9,V(o+n), C;=~
Gl=1V%, Gh=—3€"3;V'W, G;=—

%(Sijvz—a,zj)vzW,
;-(6,’jvz'_a,'2j)n .

(an

Both tensors are manifestly conserved; C! is also traceless and conformal: C¥(h,s+ npE(x)) =Cl(h,s). The field

equations (8) have just three independent components,

EQ=+V2(o+u " 'VW) =xmé*(r) ,

Eb=— 3 €U3;VIIW+(1/2u) (9+n)1 =} koed;82(r)

E,’j = — ;‘ (5,’]V2 - 6,3)[n +/1 - lVZVV] =0.
The desired solution of (12) is given by
W=u""k(m+uc)(C—Y),

o=x(m+puc)Y—2xkmC, (13)

n=xk(m+uo)Y.

In the absence of any sources, our time-independent
field equations have only the trivial solution. In the full
nonlinear theory, it has been shown>® that there are no
source-free time-independent solutions unless V2W=0; in
particular this implies that there are no static (go; =0)
solutions. We conjecture that there are no asymptotical-
ly flat stationary solutions either, just as in source-
free Einstein theory (for any D). These are, however,
source-free cosmological solutions; explicit examples are
given in Refs. 5-7, but these are not accessible in our
linearization about flat space.

Let us next discuss the special case in which m+uc
vanishes. Then the metric (13) reduces to

n=Ww=0, ¢=—2xmC, (14)
which has the same form as that generated by a struc-
tureless spinless point mass in pure (linearized) Einstein
gravity, since the field equations essentially reduce to
“U14u7'Vx)"(G+x>T) =0: The “twist” effects of the
CST and of T} have canceled each other, and there is no
net angular momentum. (If o is thought of as represent-
ing the angular momentum of a charged system,
o=e?/2ruy, this occurs for e2/2zm=—puy/u. The
minus sign here expresses the requirement that the two
helicities, whose sign is controlled by that of the respec-
tive u’s, be opposite.) If the combination m+puo does
not vanish (in particular if o=0), then neither can W,
just as for V in the vector case.

The spacetime represented by the generic solution
(13) is asymptotically locally flat. Indeed, near spatial
infinity, it has the same form as (the linearization of) the
exterior (hence flat) Kerr metric generated by spinning
massive sources in pure D =3 Einstein theory.? There,

(12a)
(12b)
(12¢)

m was the inertial mass, the gravitational mass vanished
(because the Newtonian potential n did), and the “iner-
tial” spin was just the o part of the coefficient of Cin W,
the *“‘gravitational” spin vanished as well because its con-
tribution to the linearized geodesic equation is through
Féjxf and F6j~h0,-‘j —hoj_i~6ijV2W~6[jV2C~0 (in-
cidentally, T'§; is obviously independent of the longitudi-
nal, gauge, part of hg;). We show next that while the
inertial quantities are the same in our theory, the gravi-
tational ones do not vanish. The Newtonian potential is
now (m+puo)Y(r); since the gravitational mass m, of a
source is defined in terms of the static force it generates
on a test particle, m, is now m+puo. (The fact that the
force is of finite, rather than infinite, range in massive
gravity is irrelevant.) Thus the equivalence principle is
violated (but for quite different reasons than in D=3
Einstein gravity) when there is a nonvanishing spinning
Tb, just as ““charge equivalence” was violated in the elec-
tromagnetic system. As noted above, gravitational angu-
lar momentum is obtained from the geodesic equation
through the term ['é;x’ ~ e:V2Wx/~Yelx/, which exhib-
its a torque (again at finite range) imparted to the test
particle; by (13) this quantity is the coefficient o+ u ~'m
of Yin W. The o contribution is due to the source’s in-
trinsic spin, while g ~'m measures the amount of gravi-
magnetic field generated by m. In the linearized approx-
imation, the inertial quantities are just the source values,
namely m and o for mass and spin, according to the usu-
al flux-integral definition using the left-hand side of the
field equations (12), namely,

m,=x_2fE8d2x= T x“’ﬁV(¢+p “'VW)-dS=m,
(15)
S, -x‘sz’/X'Eédzx

=x"§5v

-dS=o,

W+L(¢+n)
2u
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so that
mg=m;+uS;, Sg=S;+u ‘m=y""'m,. (16)

In the full nonlinear theory, the results will be more
complicated, because of the gravitational field’s contribu-
tions. However, the relations between the dressed gravi-
tational and inertial quantities should remain similar. It
is also an interesting question whether the special prop-
erties of the m+uo=0 source carry over to the full
theory, and whether any static many-particle solutions
are permitted there.

We have seen that (as expected) the asymptotic form
of the general solution (13) is that of the pure Einstein
solution (and the two agree everywhere in form for the
special case m+uc=0). In particular, we found that
the spatial metric behaves near infinity as

o~ —2x2mC =+« m/xlnr , (17a)

whereas the corresponding Einstein result®, was, in our
units,

(17b)

The left-hand side of (17b) of course linearizes to ¢.
The sign difference between (17a) and (17b) is due to
the fact that in Ref. 3 the (a priori arbitrary) sign of x#
was so chosen as to give a normal conical two-geometry
with positive angular defect. However, we have no such
freedom here and are therefore obliged to accept a nega-
tive (linearized) angular defect for a positive mass
source. This represents a conical space whose angular
range exceeds 2m, a result which (being asymptotic)
presumably persists in the full nonlinear solution. Con-
sequently, the source mass can now be arbitrarily large
(in contrast with the pure Einstein sign above where
there was a maximal allowed value of m) as is physically
reasonable for the present, dynamical, system. On the
other hand, it is precisely because of our x? sign that the
theory describes an attractive Newtonian force [since
K¢(x) <0], at least for m+uo > 0—and so in particu-
lar for normal m >0 sources when o is absent. ‘“‘An-
tigravity” is, however, possible for sufficiently negative
uo.

In conclusion, a structureless massive particle coupled
to linearized topologically massive gravity exhibits a gra-
vimagnetic field (proportional to m/u) to an asymptotic
observer, just as a charged particle has a magnetic field
~e/u in the corresponding electromagnetic model.

If the particle has “bare” spin as well (for example be-
cause it is also coupled to the electromagnetic CST) then

In(1+¢) = —«xtm/xlnr.
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we saw that this spin contributes additively to both the
gravitational angular momentum and mass, so that the
two contributions can even cancel. We noted further
that the equivalence of inertial and gravitational quanti-
ties is in general violated, precisely because the gravita-
tional mass and spin as felt by a test particle were
“twisted” away from the inertial ones, a phenomenon
which permits “antigravity” repulsive Newtonian forces.

We have not discussed here the “anyon’ aspects of our
solutions, namely the statistics change due to the pres-
ence of the ho; potential: The latter enters on the same
footing as A; in its coupling to the particle. Hence (for
o=0) the anomalous phase here is just obtained by re-
placing e by xm and so is proportional to (mx?)m/pu.
Insofar as the linearized model treated here is Poincaré
invariant, the statistics thus induced should agree with
the spin defined as the value of the total system’s rota-
tion generator (apart from the particle’s orbital contribu-
tion) for our solution. This calculation is in progress.

Finally, one may speculate that to the extent that ma-
terial stresses are relevant in planar systems, these would
induce an effective D=3 gravitational contribution
whose lowest terms in a derivative expansion would gen-
erate both Einstein and Chern-Simons terms to realize
the mechanism presented here.

I thank L. Alvarez-Gaumé, L. Susskind, and especial-
ly Jim McCarthy for enlightening discussions. This
work was supported by NSF Grant No. PHY88-04561.

Note added.— Since this paper was submitted, I re-
ceived a preprint by B. Linet in which the solution (13)
for 0 =0 was also obtained, and a preprint by M. E. Or-
tiz confirming the conjecture in text that the m +uoc =0
solution indeed generalizes to the full nonlinear theory.
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