Upper Critical Field of a $Sm_{1.85}Ce_{0.15}CuO_{4-y}$ Single Crystal: Interaction between Superconductivity and Antiferromagnetic Order in Copper Oxides

Y. Dalichaouch, B. W. Lee, C. L. Seaman, J. T. Markert, and M. B. Maple Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, California 92093

(Received 13 September 1989)

The temperature dependence of the anisotropic upper critical magnetic field, $H_{c2}(T)$, has been determined resistively in antiferromagnetic Sm_{1.85}Ce_{0.15}CuO_{4-y} single crystals. We observe the first evidence in high- T_c copper oxides for the interaction between superconductivity and antiferromagnetic ordering of rare-earth ions; estimates of the exchange coupling $J \approx 0.1$ eV and the Ginzburg-Landau coherence lengths $\xi_{ab} = 79$ Å and $\xi_c = 14.7$ Å are obtained. In both Nd_{1.84}Ce_{0.16}CuO_{4-y} and Sm_{1.85}Ce_{0.15}CuO_{4-y}, the H_{c2} data above T_N can be described by $H_{c2}(T)/H_{c2}^+(0) = (1 - T/T_c)^{1.6}$.

PACS numbers: 74.60.Ec, 74.70.Hk, 74.70.Vy

The recent discovery of high-temperature superconductivity in the L_{2-x} Ce_xCuO_{4-y} (L=Pr, Nd, Sm, and Eu; $x \approx 0.15$)^{1,2} and L_{2-x} Th_xCuO_{4-y} (*L*=Pr, Nd, and Sm; $x \approx 0.15$)²⁻⁴ compounds has demonstrated that superconductivity can occur by electron doping into an insulating parent compound, here L_2CuO_4 . The nature of the charge carriers in the electron-doped compounds has not yet been resolved. Measurements of the Hall^{1,5} and Seebeck⁶ coefficients of $Nd_{2-x}Ce_xCuO_{4-y}$ suggest that the charge carriers are electrons, an interpretation corroborated by x-ray absorption spectroscopy (XAS).⁷ However, photoemission spectroscopy⁸ does not provide evidence for Cu 3d hole filling by Ce; furthermore, no clear evidence for the formation of Cu¹⁺ could be found from electron-energy-loss spectroscopy (EELS).⁹ The EELS study and another XAS study¹⁰ on $Nd_{2-x}Ce_{x}CuO_{4-y}$ indicate the presence of holes in the O 2p band.

The elucidation of intrinsic superconducting properties can be complicated by the presence of magnetic rareearth ions. At least two of the electrons-doped compounds (L = Nd and Sm) exhibit the coexistence of superconductivity and antiferromagnetic order of the rare-earth ions at low temperatures.¹¹ In this Letter, we present evidence from $H_{c2}(T)$ measurements on a $Sm_{1.85}Ce_{0.15}CuO_{4-\nu}$ single crystal for the interaction of superconductivity and rare-earth magnetic order, the first observation of such behavior in the high- T_c copper oxides. We show that consideration of rare-earth magnetism enables the correct determination of intrinsic parameters, particularly the Ginzburg-Landau coherence lengths. We also note the absence of appreciable dissipative or fluctuation contributions to the resistive transitions and observe a scaling behavior of H_{c2} near T_c .

Single crystals of $Sm_{1.85}Ce_{0.15}CuO_{4-y}$ were grown from a CuO-rich composition of the starting materials. A mixture of Sm_2O_3 (99.99% pure), CeO_2 (99.99% pure), and CuO (99.999% pure) in the molar ratio 37:6:320, respectively, was heated slowly to 1300 °C in air. After a 1-2-h soak at 1300 °C, the temperature was lowered at a rate of 10 °Ch⁻¹ down to 1000 °C and then cooled to room temperature by shutting off the furnace. Single crystals in the form of thin platelets were mechanically removed from the flux. X-ray-diffraction analysis confirmed the Nd₂CuO₄ structure with the *c* axis perpendicular to the largest face of the platelets. To induce superconductivity, the crystals were annealed at 950 °C in flowing helium for 14 h and then quickly cooled to room temperature over a period of 1-2 h. Low-frequency electrical resistivity measurements were performed using a four-lead ac resistance bridge; dc magnetic-susceptibility data were taken using a SQUID susceptometer (SHE corporation).

Shown in the inset of Fig. 1(a) is the temperature dependence of the electrical resistivity in the basal plane for a $Sm_{1.85}Ce_{0.15}CuO_{4-y}$ single crystal, in zero applied magnetic field. The resistivity ρ exhibits metallic behavior and has values of $1 m \Omega$ cm at room temperature and 380 $\mu \Omega$ cm just above T_c. The $\rho(T)$ behavior below 150 K, which is qualitatively different from that of holedoped superconductors, is reminiscent of ordinary metals, and is similar to that recently reported for a $Nd_{1.84}Ce_{0.16}CuO_{4-v}$ single crystal.⁶ The superconducting transition temperature T_c , defined throughout this work as the temperature at which ρ drops to 50% of its extrapolated normal-state value, is 11.4 K, while the 10%-90% transition width is 2.7 K. Magnetization data were taken on the same single crystal cooled in a field of 50 G applied along the basal plane in order to minimize demagnetization corrections. A Meissner fraction of more than 43% is observed which demonstrates that the sample is a bulk superconductor.

Shown in Fig. 1 are the resistive-transition curves in magnetic fields H applied perpendicular and parallel to the c axis. There is a striking parallel shift of the transition curves to lower temperatures for both H directions; the transition widths remain essentially constant as in conventional type-II superconductors. Unlike other

FIG. 1. Electrical resistivity ρ as a function of temperature T for a Sm_{1.85}Ce_{0.15}CuO_{4-y} single crystal in applied magnetic fields up to 10 T (a) perpendicular and (b) parallel to the c axis. Inset: $\rho(T)$ in the (a,b) plane for Sm_{1.85}Ce_{0.15}CuO_{4-y}.

high- T_c cuprates where the determination of H_{c2} is complicated by extensive field-induced broadening of the resistive transitions, possibly due to dissipative flux motion¹² or to fluctuation effects,¹³ in this case H_{c2} is well defined.

The $H_{c2}(T)$ curves obtained from the $\rho(T,H)$ data are displayed in Fig. 2 for the two orientations and reveal a large anisotropy with H_{c2} largest for H perpendicular to c, typical of the layered compounds. The shapes of these curves remain unchanged if T_c is defined from the 90% or 10% instead of the 50% drop in resistivity. For $H \perp c$, the H_{c2} curve exhibits a slight upward curvature near T_c ; the initial slope $(-dH_{c2}/dT)$ estimated by ignoring such curvature is 3.6 T/K. For $H \parallel c$, $H_{c2}(T)$ presents a positive curvature throughout the whole temperature range and the initial slope $(-dH_{c2}/dT)$ estimated from the data below 11 K is 0.1 T/K. The rapid increase of H_{c2} below 5 K for $H \parallel c$ can be explained in terms of magnetic ordering of Sm³⁺ ions and is dis-

FIG. 2. Upper critical magnetic field $H_{c2}(T)$ determined from $\rho(T,H)$ measurements for applied magnetic fields $H \parallel c$ and $H \perp c$. Solid lines are guides to the eye.

cussed below. For $\mathbf{H}\perp\mathbf{c}$, the steep slope of $H_{c2}(T)$ and the higher temperatures imply that paramagnetic effects are small, and the weak-coupling formula¹⁴

$$H_{c2}(0) = -0.69T_c(dH_{c2}/dT)_T = T_c$$

can be used to estimate $H_{c2}(0) \approx 28.2$ T. For $\mathbf{H} \parallel \mathbf{c}$, we use the extrapolated value $H_{c2}(0) = 5.23$ T, which will be justified later in the text. The Ginzburg-Landau coherence lengths deduced from these $H_{c2}(0)$ values are $\xi_{ab} = 79$ Å and $\xi_c = 14.7$ Å. The anisotropy factor is about 5 and results in an effective-mass ratio $m_c/m_{ab} \approx 29$. This intrinsic anisotropy is smaller than found in Ref. 6; the large factor (-21) determined in that study is most likely an artifact of the magnetic pair-breaking contribution of the Nd³⁺ ions, similar to that of the Sm³⁺ ions discussed below. Of notable importance is the large value of the coherence length within the Cu-O planes which increases the pinning energy according to the scaling theory of Anderson and Kim¹⁵ and could account for the parallel-shift behavior of the resistive transitions. Corresponding values of ξ_{ab} in holedoped copper-oxide superconductors range typically between 13 and 40 Å. Positive curvatures in $H_{c2}(T)$ curves have been widely reported in high- T_c cuprates and generally accounted for by flux-creep dissipation or fluctuation effects; however, these effects are generally accompanied by resistive broadening not observed here. Inhomogeneity in rare-earth or oxygen content may be a factor; an interesting possibility is that the curvature is due to superconducting dimensional crossover¹⁶ where upward curvatures are reported not only for H perpendicular but also parallel to the c axis.¹⁷ A recently proposed mechanism for the upward curvature in H_{c2} involves a mixing of order-parameter components.¹⁸

In Fig. 3(a), normalized H_{c2} data for Sm_{1.85}Ce_{0.15}-CuO_{4-y} (this work) and Nd_{1.84}Ce_{0.16}CuO_{4-y} (Ref. 6)

FIG. 3. (a) Normalized upper critical magnetic field $H_{c2}(T)/H_{c2}^{+}(0)$ vs reduced temperature T/T_c for Sm_{1.85}Ce_{0.15}CuO_{4-y} (this work) and Nd_{1.84}Ce_{0.16}CuO_{4-y} (Ref. 6) single crystals for $H \parallel c$, where $H_{c2}^{+}(0)$ equals 1.83 and 7.0 T, respectively. (b) Magnetic susceptibility χ vs T/T_c for Sm_{1.85}Ce_{0.15}CuO_{4-y} single crystals measured in an applied magnetic field of 1 T parallel to the *c* axis.

single crystals are plotted versus reduced temperature T/T_c , for **H** || **c**. Two outstanding features emerge from this plot. First, the normalized data for both systems scale with T/T_c for $T/T_c \gtrsim 0.5$, and consequently can be described with a single equation, i.e., $H_{c2}(T)$ = $H_{c2}^{\dagger}(0)(1-T/T_c)^{1.6}$ (see below). Second, there is a sudden departure of the $Sm_{1.85}Ce_{0.15}CuO_{4-v}$ data from the behavior predicted by this scaling and followed by the Nd_{1.84}Ce_{0.16}CuO_{4-y} data for $T/T_c \lesssim 0.5$. This increase in H_{c2} correlates with a sharp drop near $T_N = 4.9$ K in the static magnetic susceptibility for $H \parallel c$, shown in Fig. 3(b). Unequivocal evidence for bulk long-range antiferromagnetic ordering of the Sm^{3+} ions along the c axis near T_N has already been found in specific-heat and magnetic-susceptibility measurements on both singlecrystal and polycrystalline specimens of Sm_2CuO_4 and superconducting $Sm_{1.85}Ce_{0.15}CuO_{4-y}$.^{11,19} This, along

FIG. 4. $\ln[H_{c2}(T)/H_{c2}^{+}(0)]$ vs $-\ln(1-T/T_c)$ plot of the data in Fig. 3 for $H \parallel c$, where $H_{c2}^{+}(0) = 1.83$ T. $T_N(\text{Sm}^{3+})$ refers to the peak in $\chi \parallel T$. Straight lines represent least-squares fits to the data.

with the fact that T_N in the Sm_{1.85}Ce_{0.15}CuO_{4-y} single crystal does not vary significantly with applied magnetic fields to 4 T, demonstrates that the peak in the magnetic susceptibility shown in Fig. 3(b) is associated with the antiferromagnetic ordering of Sm³⁺ ions along the c axis.

The effect of magnetic ordering on the upper critical field in $Sm_{1.85}Ce_{0.15}CuO_{4-\nu}$ clearly indicates that there is a significant interaction between the rare-earth magnetic moments and the superconducting charge carriers. The $\sim 25\%$ decrease of the Néel temperature of the Sm³⁺ ions for 7.5% Ce doping in Sm₂CuO₄, as found from specific-heat measurements,¹¹ is consistent with this observation. Additional evidence for the interaction between rare-earth magnetic ordering and superconductivity is presented in the ln-ln plot of Fig. 4, in which the normalized upper critical field, $H_{c2}(T)/H_{c2}^{\dagger}(0)$, is shown as a function of $1 - T/T_c$ for $\mathbf{H} \parallel \mathbf{c}$. The influence of the magnetic ordering associated with the Sm^{3+} ions on the superconducting state is evidenced by the distinct kink in the data near the Néel temperature. A least-squares fit of the data above 5.7 K yields a slope of 1.6 which is higher than that of the data for $H \perp c$, equal to 1.2 (not shown).

The spectacular effects of long-range antiferromagnetic order on superconductivity have been previously observed in the RMo_6X_8 (X=S, Se) and RRh_4B_4 systems.²⁰ For some compounds, such as $ErMo_6S_8$ and $SmRh_4B_4$, H_{c2} increases below T_N , while for others, such as RMo_6S_8 for R = Tb, Dy, and Gd as well as NdRh₄B₄, H_{c2} decreases below T_N . In the context of the multiple pair-breaking theory, the anomalous increase in H_{c2} for $H \parallel c$ in $Sm_{1.85}Ce_{0.15}CuO_{4-y}$ can be explained in terms of a reduction of the magnetization and, in turn, of the exchange field associated with the Sm spins and a corresponding decrease in its pair-breaking effect on the conduction-electron spins through the Zeeman interaction. We estimate the exchange coupling by first requiring the orbital critical field, $H_{c2}^{*}(T)$, to satisfy $H_{c2}^{*}(0)$ $=H_{c2}(0)$, since the Sm³⁺ magnetization at T=0 will be zero for H || c. [This consideration also justifies the choice of $H_{c2}(0)$ for $\mathbf{H} \parallel \mathbf{c}$ made earlier in the calculation of the coherence lengths.] We estimate $H_{c2}^{*}(T)$ with the form $H_{c2}^{*}(T) = H_{c2}^{*}(0)(1 - T/T_{c})^{\beta}$. We may thus deduce²¹ the exchange field $H_J(T)$ due to the Sm³⁺ ions, which has a peak value at the Néel temperature of $H_I(T_N) \approx 90$ kOe (160 kOe), corresponding to an exchange coupling $J \approx 60$ meV (110 meV), for $\beta = 2$ (1). This is about a factor of 4 greater than that observed in SmRh₄B₄, and reflects a stronger rare-earth-conduction-electron coupling in the layered-copper-oxide compound.

In conclusion, we have demonstrated for the first time in high- T_c copper oxides that magnetic ordering of rareearth ions affects superconductivity; the effect is appreciable in Sm_{1.85}Ce_{0.15}CuO_{4-y} although not yet observable in the RBa₂Cu₃O_{7- δ} compounds. This observation could be helpful in identifying the pairing mechanism in the family of electron-doped superconductors. Accounting for paramagnetic effects, we obtained values of the coherence lengths and anisotropy. We also noted the absence of dissipative or fluctuation effects and observed a scaling behavior of H_{c2} .

This work was supported by the U.S. Department of Energy under Grant No. DE-FG03-86ER45230 and the U.S. National Science Foundation under Grant No. DMR-8411839.

¹Y. Tokura, H. Tagaki, and S. Uchida, Nature (London) 337, 345 (1989).

²J. T. Markert, E. A. Early, T. Bjørnholm, S. Ghamaty, B. W. Lee, J. J. Neumeier, R. D. Price, and M. B. Maple, Physica (Amsterdam) **158C**, 178 (1989).

³J. T. Markert and M. B. Maple, Solid State Commun. 70, 145 (1989).

⁴E. A. Early, N. Y. Ayoub, J. Beille, J. T. Markert, and M. B. Maple, Physica (Amsterdam) **160**C, 320 (1989).

⁵H. Tagaki, S. Uchida, and Y. Tokura, Phys. Rev. Lett. **62**, 1197 (1989).

⁶Y. Hidaka and M. Suzuki, Nature (London) **338**, 635 (1989).

⁷J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Croft, Nature (London) **337**, 720 (1989).

⁸M. K. Rajumon, D. D. Sarma, R. Vijayaraghavan, and C. N. R. Rao, Solid State Commun. **70**, 875 (1989).

⁹N. Nücker, P. Adelmann, M. Alexander, H. Romberg, S. Nakai, J. Fink, H. Rietschel, G. Roth, H. Schmidt, and H. Spille, Z. Phys. B **75**, 421 (1989).

¹⁰E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, Phys. Rev. B 40, 2617 (1989).

¹¹M. B. Maple, N. Y. Ayoub, T. Bjørnholm, E. A. Early, S.

Ghamaty, B. W. Lee, J. T. Markert, J. J. Neumeier, and C. L. Seaman, Physica (to be published).

¹²Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. **60**, 2202 (1988).

¹³S. Kambe, M. Naito, K. Kitazawa, I. Tanaka, and H. Kojima (to be published).

¹⁴R. R. Hake, Appl. Phys. Lett. **10**, 186 (1967).

¹⁵P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962); Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).

¹⁶R. A. Klemm, A. Luther, and M. R. Beasley, Phys. Rev. B **12**, 877 (1975).

¹⁷R. V. Coleman, G. K. Eiserman, S. J. Hillenius, A. T. Mitchell, and J. L. Vicent, Phys. Rev. B 27, 125 (1983).

¹⁸C. T. Rieck, Th. Wölkhausen, D. Fay, and L. Tewordt, Phys. Rev. B **39**, 278 (1989).

¹⁹M. F. Hundley, J. D. Thompson, S.-W. Cheong, and Z. Fisk, Physica (Amsterdam) **158C**, 102 (1989).

²⁰See, for example, Superconductivity in Ternary Compounds II, edited by M. B. Maple and \emptyset . Fisher (Springer-Verlag, New York, 1982).

²¹Ø. Fisher, M. Ishikawa, M. Pelizzone, and A. Treyvaud, J. Phys. (Paris), Colloq. 40, C5-89 (1979).