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Presence of Quantum Diff'usion in Tvvo Dimensions: Universal Resistance at
the Superconductor-Insulator Transition
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We argue that whenever the transition between the insulating and superconducting phases of a disor-
dered two-dimensional Fermi system at zero temperature (T 0) is continuous, the system behaves like
a normal metal right at the transition; i.e., the resistance has a finite, nonzero value at T 0. This value
is universal —independent of all microscopic details. These features, consistent with recent measure-
ments on disordered films, are hypothesized to apply to other 2D transitions at T 0, such as Anderson
localization with spin-orbit coupling, and the quantum Hall effect.

PACS numbers: 74.40.+k, 74.70.Mq

Since the realization that in two dimensions (2D) even
small disorder localizes all electron states, ' it has been
understood that at zero temperature (T 0) electrons do
not diffuse and a metallic phase with nonzero conductivi-

ty is forbidden in 2D. In this paper, however, we demon-
strate from simple scaling arguments that right at a con-
tinuous T 0 phase transition separating superconduct-
ing from insulating behavior, disordered fermion films do
have a finite, nonzero "metallic" resistivity (ar T=O).
We argue, moreover, that the value of the resistance (per
square) right at the transition is universal, depending
only on the universality class of the transition, and being
insensitive to all microscopic details. We believe that
these results apply to recent experiments on amorphous
thin-film superconductors whose thickness is varied to
tune through the superconductor-insulator transition.
The experiments suggest that at a critical film thickness,
the resistance approaches a nonzero constant as T 0.
We also hypothesize that universal metallic resistance is

a generic feature of continuous T 0 conducting-to-
insulating transitions in 2D. For example, we expect
universal values for the resistance at the 2D Anderson-
localization transition in the presence of strong spin-
orbit scattering, and for the conductivities a,„and a„~ at
the transition between plateaus in the integer and frac-
tional quantum Hall effects. ' (The universal values
characterizing these various transitions presumably
differ from one another. )

Our description of the T =0 superconductor-insulator
phase transition in thin amorphous films such as those
of Ref. 3 starts from the hypothesis that the transition is
correctly described by a model of charge-2e bosons mov-

ing in a 2D random potential. In the superconducting
phase the electrons have bound to form Cooper pairs and
a description of the low-energy physics in terms of
charge-2e composite bosons is presumably valid. In the
insulating phase, where pairing is destroyed and the indi-

vidual electrons are presumably localized by the disor-

der, such a description is clearly inadequate. It seems
nonetheless likely that the asymptotic critical properties
of the transition are insensitive to the obvious difference
between bosonic and fermionic insulating phases, i.e., be-
tween the Bose-glass and Fermi-glass' phases. Bose
condensation and the superconducting transition in pure
systems at finite T belong, e.g. , in the same universality
class, the difference between the normal bosonic and fer-
mionic phases notwithstanding. Moreover, in 1D the
T 0 superconductor-insulator transition can be studied
directly in terms of a model of electrons with a BCS at-
tractive interaction moving in a random potential. It is

found that the critical behavior of this T 0 phase tran-
sition is in the same universality class as the superfluid-
insulator transition in a model of repulsively interacting
bosons, representing the Cooper pairs, moving in a ran-
dom potential. We therefore expect that the experimen-
tally relevant superconductor-insulator transition in

amorphous films can be properly described in terms of
charge-2e bosons.

Consider then the following imaginary-time action for
such a system of bosons: S So+S~ with

So- d xdr[yr 8,Vr+(6/2m) ~Vy)

+ U(x) i y(x, r) i'], (la)

S~ = d xd x'drV(x —x')[~ y(x, r)
~

—no]

x [( y(x', r)
~

—no], (lb)

Here V(x) (2e) /~ x
~

is a repulsive Coulomb interac-
tion between the bosons, with no a compensating
positive-charge background (charge neutrality fixing the
boson density at no), and U(x) a random potential.

For a given disorder strength, as the boson density no
is increased through some critical density n„we expect a
T 0 phase transition from a localized Bose-glass phase
to a superconducting phase with (y)aO. Provided this

1990 The American Physical Society 587



VOLUME 64, NUMBER 5 PHYSICAL REVIEW LETTERS 29 JANUARY 1990

transition is continuous, it is characterized by a super-
conducting correlation length which diverges as (-6
where 6'=no —n, measures the distance to the transition
and v, the correlation-length exponent, satisfies the in-

equality' v) 2/d. There is also a characteristic frequen-

cy t1 which vanishes at criticality as O-g, where z is

the dynamical exponent. Near the T=0 critical point
all frequencies and the temperature scale with A. Thus
the Pnite-temperature superconductor-to-normal transi-
tion occurs at a temperature T„which scales as T,
—(no n,—) '" for no n,+.

In the superfluid phase the second-sound (phonon)
mode has a plasmon-like dispersion relation ' "
co-k ' due to the long-range Coulomb interaction
between the bosons. This mode can be described by an
eA'ective imaginary-time action which depends only on
the phase p of the order parameter y=

~ y ~
exp(ip),

S~ = —,
'

J d k dco [(p, h/2m )k '

+hco'(k )" '/e'] (y(k, co) ['. (2)

Here p, is the fully renormalized superfluid density and

eR a "fully renormalized" charge,

eR =—lim ) k )
'/ C«(k, co= 0),

0

cr(co) -(2e) 'p, ( ico)/—( imco—), (3)

where p, (co) is a generalized frequency-dependent super-

fluid density defined as

with C„„(k,co) b(n(k, co))/Bp(k, co) the density-density

response function. Near the T =0 superconductor-
insulator transition, p, vanishes as p, -( ' . This
follows from the fact that the contribution to the action
from a coherence volume ( /tt of the first term in (2) is

of order A. Similar reasoning applied to the second term
implies that the charge eR should scale near the transi-
tion as en-(' '. However, in a charged system, ez
cannot be zero, even in an insulating phase, implying the
bound z(1 on z. Provided the insulating phase is a
gapless Bose glass, rather than a Mott-Hubbard insula-
tor with a gap (in which case one can have eg =~), we

expect eg will approach a finite value at the transition so
that z 1. The result z 1, which should hold in all di-

mensions, is the generalization to charged systems of the
relation z d, which has been argued to hold at the
T 0 superfluid-insulator transition in charge neutral
boson systems, such as He in porous media.

Scaling of the frequency-dependent conductivity near
the superconductor-insulator transition can be obtained
from the relation '

p, (co) -(~ y~ ) (rn/4e h) d xdr(T, J„(x,r)J„(x', r'))exp[ico(r —r')], (4)

with J, the x component of the charge-2c boson current
operator, J —(eh/mi)[y Vy yVy*]. —Since all fre-
quencies should be scaled by the characteristic frequency
0 near the transition one can write the scaling relation

p, (co,&) =& (&/a)' 'p, (co/n), (5)

where p, is an appropriate dimensionless scaling function
and 0 (h/ma )(a/g)', with a a short-distance cutoA'.

For x =—co/0 0 we must recover the result p,
, so p, (x) must approach a constant. The

form as x ~ is set by the requirement that at criticali-

ty, where both g and 0 '-g' are infinite, p, (co,( ~)
is finite: p, (x) cdx' +' t', with c~ a dimensionless

constant. Combining this with (3) we deduce that at cri-
ticality

o(co,g=~) =cd(e'/h)a' '( ihco/ma')"— (6)

Similarly, at criticality, the finite-temperature dc con-
ductivity should scale as cr(T,(=~)—Tt t'. This is

consistent with the result cr —1/T, derived by Giamarchi
and Schulz for the 1D superconductor-insulator transi-
tion (with disorder but short-range interactions), for
which z 1.

In 2D the T 0 conductivity at criticality is therefore
a finite constant, cde /h, in the dc limit. Thus, at the
superconductor-insulator transiton the system exhibits

true metallic conduction at T =0, something not possible

in 2D normal fermion systems. The Cooper pairs, poised

on the brink of becoming superconducting, are capable
of ordinary diffusion. Note that scaling, which gives

cr(co ) —co
t for the Anderson-localization transition

for electrons, appears to imply a finite dc cr at criticality
for that case as well. This is illusory, however: Since
d 2 is the lower critical dimension for the localization
transition for fermions without spin-orbit coupling, loga-
rithmic corrections in co drive the conductivity to zero,
localizing all the states. ' Logarithms are not expected in

the boson case (6), however, since d = I, not d =2, is the
lower critical dimension. "

Recall the resistance per square, R*—= I/a(co=0, (
~), when expressed in units of h/e is a pure number

[I/2trcd in (6)], given by the k =co=0 limit of the
response function defined in (3) and (4), evaluated at the
critical point. Standard renormalization-group (RG) ar-

guments imply that this number is, like critical ex-

ponents, universal, depending only on the universality

class of the relevant transition, and not on microscopic
details. The situation is rather analogous to what hap-

pens at the Kosterlitz-Thouless transition in the 2D
classical XY model, where the dimensionless ratio
h p, (T, )/mk&T, is a universal number' [cf. Eq. (3)
with T, replaced by hco].

Similar arguments presumably apply to other T=O
conducting-to-insulating transitions, leading us to hy-
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pothesize that, e.g., the conductivity at the Anderson-

localization transition in the presence of spin-orbit cou-

pling in 2D and a„„and a„~ at the transition between
plateaus in the quantum Hall eA'ect are also universal.

Will the universal resistance at the superconductor-
insulator transition be a simple rational times the quan-
tum of resistance h/4e '? As detailed below, bosons and

vortices (in the boson wave function) play a dual role at
the transition. In the superconducting phase, the vor-

tices are bound into pairs and do not conduct, whereas in

the insulating phase the vortices are mobile and (Bose)
condense. Since each boson carries charge 2e, and each
2x phase slip induced by vortex motion causes a time-

integrated voltage drop in units of (h/2e)2z h/2e, if
the transiton was self-dual between bosons and vortices,
R* would be exactly h/4e . As argued below, however,
the theory is probably not self-dual, so a simple rational
times h/4e seems unlikely.

We now sketch the derivation of a field theory, and the
RG analysis, near the upper critical dimension of 6, of
the fixed point governing the superconductor-to-Bose-
glass transition at T 0 for model (1). We start from a
lattice model since it provides a slightly more convenient

representation ' than does the continuum model (1):

H = gV J (n; ——np) (nj —np) + P U; n; —t g cos(p„p; ) .
t, v

(7)
Here n;, the boson number on site i, is conjugate to the
order-parameter phase: [p;,n, ]-ib;~; t is the hopping
strength, U; and V;, —~

i —j ~

' are, respectively, the

lattice equivalents of the random and Coulomb potential
in (1), and h, =p;~, —p;.

Representing the partition function Z associated with
(7) as a path integral over a basis of states diagonal in

the density, i, and repeating the duality transformations
described in Ref. 14 for d =2 [the long-range Coulomb
interactions in (7) being the only new feature), one can
write Z in terms of a Hamiltonian describing an eA'ective

"superconductor" coupled to a gauge field, A, which is
simply related' to the original boson density. Because
of the duality transformations, the disordered phase of
this system corresponds to the superfluid phases of the
original boson problem, while ordered, "superconduct-
ing" phases correspond to insulating phases of the boson
system. Reference 14 describes these correspondences,
and shows that the "superconducting" order parameter
of the dual theory represents the vortices in the original
boson wave function. The Bose-glass phase is character-
ized by a vortex order parameter which is nonzero but
varies from site to site, vanishing under spatial averag-
ing. The complex, Hermitian matrix Q, &p(x, r, r'), an
analog of the Edwards-Anderson order parameter for
spin glasses, ' is thus a more appropriate order parame-
ter. (The replica subscripts a and P run from 1 to n, the
familiar limit n 0 to be taken at the end of the calcu-
lations. ' ) The static character of the quenched impuri-
ties in (7) is responsible for the nonlocality in time of
Q,», which distinguishes this order parameter from the
closely analogous objects that characterize so-called
"gauge glasses. "' Writing Z in terms of Q,» and the
replicated version of the gauge field A—= (A,A') yields
the final action S' So+St.

Sp g t d xdr
~
(VxA )

~
+

g
d x' V(x x')[(VxA )„' npl [(VxA, )„' np]

a
(8a)

Sl 2 g „d xdrdr'[(D, pg, p(x, r, r')
[ + (D,'Q, p(

a&P
~Dsg,*p

~
+r

~ Q,p( )]+w d x Tr[g(x) ]. (8b)

Here D,p
——V~ ie'[A, —(r) —As (r')], D,':f), —ie'—

xA,'(r), V=(V~, 8,), and e', r, and w are coupling con-
stants. The trace in (8b) is over replica indices and time.
The obvious dissimilarity of representations (8) and (1)
make it highly unlikely that the fixed points of these
two actions are identical, and hence that the
superconductor- Bose-glass transition is self-dual. Thus
we do not expect R* to be a rational multiple of h/4e .

Keeping in mind that only for d =2 is (8) dual to the
original problem (1), one can analytically continue the
dimensionality d to perform a momentum-shell RG
analysis. Since the disorder is correlated in time, such
analysis requires a double expansion in the two small pa-
rameters e=6 —d (6 being the upper critical dimen-
sion), and e„ the number of time dimensions. The physi-
cal problem of interest corresponds to a=4 and s, =1.
To leading order one obtains the correlation length, spa-
tial decay, and dynamical exponents, v = —,

' +5e/24,
rt =e, =e/6, and z = I —e/6, respectively. Unfortunately,

this dimensionality expansion is not helpful in estimating
the "universal conductivity, " since the conductivity is

only universal in d 2.
In the absence of a direct calculation of R* at the

superconductor-Bose-glass transition in 2D, it is instruc-
tive to calculate the corresponding universal quantity for
related models. For example, for integer no, the lattice
model (7) with no disorder (U; =0) has an insulating

phase which is a Mott insulator with a particle-hole gap,
rather than a Bose glass. The Mott-insulator-super-
conductor transition at fixed integer density is

governed, '' for D=2, by the isotropic 3D XY fixed

point. Since even weak disorder presumably produces a
gapless Bose-glass phase between the Mott and super-
conducting states, the 3D XY model does not describe
the superconducting transition in any real disordered
material. Nevertheless, in systems with integer density
and weak disorder (e.g. , periodic arrays of Josephson

S89



VOLUME 64, NUMBER 5 PHYSICAL REVIEW LETTERS 29 JANUARY 1990

junctions), the model might well give a reasonable
description of the transition, except asymptotically close
to criticality.

The universal resistance at the Mott-
insulator-to-superconductor transition follows by
evaluating (3) and (4) at the critical point of the classi-
cal XY model [i.e., Eq. (1) with U(x) =0, V(x) =b(x),
and r), —r), ]. To get a feeling for the size of R, we

have generalized the O(2) XY model to O(2N), by con-
sidering a model with N complex fields, and have calcu-
lated the resistance exactly in the N ~ limit; in this
limit the Hartree approximation becomes exact. The re-
sult at criticality for R is R =(8/tr)R&, where Rg

h/4e 6.5 kQ/& is the quantum unit of resistance.
This exactly solvable limit confirms the scaling analysis
leading to (6) and hence supports the claim that amor-
phous films have a universal resistance at the super-
conductor-insulator transition.

Although one should not use the XY-model numbers
seriously in comparison with experiment, it is amusing
that they are consistent with current experimental data.
Recent experiments on Josephson-junction arrays, ' the
system for which the Hamiltonian (8) with integer no
and no randomness seems most appropriate, appear con-
sistent with 8Rg/tr. Data on this amorphous films sug-
gest R*'s in the range 8-25 kQ, again not inconsistent
with 8Rg/tr. Of course the experiment must be taken to
lower temperatures before experimental confirmation of
the universality of R* can be claimed, and the universal
value measured. Likewise, a theoretical advance is

necessary to calculate a value of R* more reliable than
"something of order Rg."
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