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Wave Propagation through Disordered Media and Universal Conductance Fluctuations
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Using the many-channel approximation to Landauer s formula and statistical scattering theory, we

calculate analytically the average, &G), and the variance, var(G), of the conductance of a disordered

sample of length L, described by a microscopic random Hamiltonian, and coupled at each end to an

ideally conducting lead. We show that the coupling to the leads strongly aA'ects the behavior of (G) and

var(G) for sample sizes L (Lo, where Lo is a characteristic length of the order of several tens of the
elastic mean free path. For L &&Lo, this coupling becomes unimportant.

PACS numbers: 72.10.—d, 05.60.+w, 72. 15.—v

Measured at low temperature, as a function of an
external magnetic field or of the Fermi energy, EF, the
conductance, G, of a disordered wire of mesoscopic size
displays universal fluctuations in the metallic regime:'
The amplitude of the fluctuations is of order one in units
of e /h irrespective of the mean value (G). This
phenomenon has prompted considerable theoretical ac-
tivity, and has been studied from various points of view,

including diagrammatic perturbation theory, numerical
simulation, ' and the statistics of the transfer matrix.
Because of the approximations used, the above-
mentioned analytical methods are essentially all confined
to sample lengths, L, much larger than the elastic mean
free path, l. Using the many-channel approximation to
Landauer's formula and a statistical scattering theory re-
cently developed in the context of nuclear physics, we

present in this Letter a novel approach to the problem
which enables us to calculate (G) and the variance,
var(G), analytically and nonperturbatively (with respect
to the impurity averaging) for all length scales L be-
tween a few times I and the localization length.

We consider a disordered sample coupled to two ideal-

ly conducting leads, at zero temperature, modeling the
disorder microscopically in terms of a random Hamil-
tonian. Most importantly, we take realistic account of
the coupling between the disordered sample and the two
leads —necessary to define and measure the conductance.
Our results for (G) and var(G) show that this coupling,
treated only cursorily in most previous work, is essential
for a complete understanding of universal conductance
fluctuations. Although irrelevant for sufficiently large
samples (L » l), it constitutes an important factor in the
behavior of both (G) and var(G) for values of L up to
several tens of I. It introduces into the problem (which is

commonly discussed entirely in terms of the Thouless en-

ergy, E,) a new energy scale —the width, I, for electron
emission from the sample into the leads. Any open sys-
tem is characterized by such a decay width I .

The system consists of a disordered sample of length
L, connected at either end to infinite perfectly conduct-
ing leads, all taken to lie along the x axis, Electrons
propagate along the leads in the +x direction, populat-

ing one of a finite number, A=L~L, kF/tt, of transverse

modes, where Ly, L, are the transverse widths of the

lead and kF the Fermi wave number. Typically, A»1.
We divide the disordered region into JC L/l equal slices.

Physically, the slices characterize successive elastic
scatterings of the electron as it moves through the sam-

ple. The thickness of each slice in the x direction is ac-

cordingly chosen to be l, rendering scattering events in

different slices statistically independent. We consider

samples of length sufficient to exclude ballistic electrons,
and confine ourselves to the domain of weak localization

where kFI»1. With each slice, we associate a site at
which there are N possible states generated by a random

Hamiltonian matrix of dimension N. Qualitatively, we

have N=Akpl»A. Since we consider neither external

magnetic fields nor spin-orbit scattering, the system is

time-reversal invariant. Therefore, we assume the ran-

dom Hamiltonian matrix to be a member of the Gauss-

ian orthogonal ensemble (GOE). Matrices at different

sites are taken to be uncorrelated. Propagation of the

electron through the disordered sample is then provided

by nearest-neighbor hopping between sites, while propa-

gation from either lead into the sample, and vice versa, is

furnished by dynamically coupling the left (right) lead to
the first (last) site, respectively. To define the model

completely, boundry conditions must be chosen in the

two leads at the sample end points. Fortunately, the
conductance turns out to be independent of this choice.

It is convenient to define the Hamiltonian, H, of the
total system as the sum of two pieces, 0 Ho+ V. Here,
V comprises the site-site and the site-lead hopping and,
for the purposes of scattering theory, may be regarded
adiabatically switched on (off) for time t —~ (t

+~), respectively. The Hamiltonian Ho thus de-

scribes a totally disconnected system of two semi-infinite

leads and K sites. In the absence of transmission

(V 0), flux conservation demands that the allowed

eigenstates, ~gE, ), in the leads correspond to waves to-

tally reflected at the end points, a„with c=L,R. We
suppress the elastic phase shift since it does not contrib-
ute to G. The channel states,

~ gF, ), have zero ampli-

tude in the right (left) lead; where a =1,2, . . . , A is the
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channel index for the transverse modes, while the con-
tinuous energy, E, is given by Ho ice, ) =E ig~, ). At
each site, i, for i =1., 2, . . . , K, there exists a basis of 1V

orthornormal states, iip), with p. =1,2, . . . , N. For
p) v, the matrix elements &ip i Ho ij v) =b;JH„," are un-

correlated random variables with a Gaussian probability
distribution centered at zero, and having a second mo-

ment ((H„", ) ) (I+b„„)X/N. The angular brackets
denote the ensemble average, and the parameter
defines (for V 0) the mean level spacing (which is the
same for all sites).

We assume that the real matrix elements of V con-
necting two neighboring sites, Ht'„'+"

=(ipse

Vii+ 1v),
are real uncorrelated Gaussian-distributed random vari-

ables centered at zero, with a second moment given by
((H„", +' ) ) -v /N. Hopping elements connectin
dilferent pairs of sites are uncorrelated, and so are H„~'„'

and H,' ' . Setting H„t'Ji =0 for ii —j i & 1, we have
now fully defined the matrix ensemble H„'„iI which we

observe to be equivalent to Wegner's gauge-invariant dis-
order. We have also worked out G for a model with

site-diagonal disorder and constant hopping matrix ele-

ments, H~t", +'i, and obtained identical results for
sufficiently weak hopping. We complete the model by
noting that the matrix elements of V between any pair of
channel states must vanish, and by assuming the real
matrix elements

(ip I V I g,'.) -w.'„(b, , b,L+b;gb, R)

to be independent of E. This condition, required to hold

approximately over an interval of typical length E„ is

fulfilled in most channels, since for EF»E„ the wave
number changes little in such an interval. Furthermore,
EF should lie within the GOE spectrum and reasonably
close to its center, which we have chosen to be zero.

Our model is formally very similar to the strong-
coupling problem in the statistical theory of precom-
pound nuclear reactions. Therefore, we defer the details
of our calculation to a future publication, and simply
focus attention on the novel aspects. The interested
reader can find the steps necessary for the present calcu-
lation in Ref. 8.

To calculate the dimensionless conductance, g=(h/
e )G, we use linear-response theory and obtain, for
A»1, g P, b[iS,b i + iS,b i ], i.e., the many-
channel Landauer formula. A factor of 2 accounts for
the spin degeneracy of the electron. The symbol S,b
denotes the element of the S matrix, taken at the energy
EF, for a particle coming in on the right in channel b and

going out on the left in channel a. Time-reversal invari-
ance implies that S,b =Sb, .

In our model, the kernel of the Lippmann-Schwinger
equation is of finite rank. Thus S,'b can be calculated
algebraically, ' and we obtain the manifestly unitary
form

S,') =b"b, b
—2ix+W,'„(D ')p'. W|;, ,

p, v

where

D„",=E+bib„, H—„'„'i +ibj[b';iQ„,(L)+bgQ„,(R)],
(2)

and the superscripts (c,c') on D ' in Eq. (1) should be
read as L 1, R K. The matrices Q„„(c),c =L,R,
given by z+, W,' „W,' „describe the coupling to the open
channels and cause the eigenvalues, 8„of D (i.e., the
poles of S;)) to be complex. The width I, defined
below, is essentially the average of —21m(h, ). Insert-
ing Eq. (1) into the Landauer formula, we find that g
can be written as a sum of two traces containing prod-
ucts of matrices of dimension N. This fact makes it pos-
sible to express g (g ) as the second (fourth) derivative,
with respect to suitable auxiliary variables, of a graded
determinant and, hence, of a generating function, Z, in-

volving integration over both commuting and anticom-
muting variables. "' After ensemble averaging Z, we
introduce composite variables and determine the saddle
point. This procedure imposes a positive-definiteness re-
quirement which entails 2v (1 . For A» 1, the saddle
point is unique since the coupling to the channels breaks
the graded symmetry. Upon expanding the exponent in

the integrand around the saddle point to second order in

the generators of the composite variables, we carry out
the resulting Gaussian integrals, dropping terms of order
N or higher. [This is formally equivalent to neglect-
ing terms of order (kpl ),or higher, in the impurity di-
agram technique of Ref. 2.] In this way, we obtain
(g) 2T IIitt T +, where the dots indicate the
weak-localization corrections to (g) given below, and a
more complex expression for var(g) also involving T,
T, and elements of the matrix II. Before giving the de-
tails, we define and interpret the quantities T, T, and

Hli.
(i) Sticking probabilities. —The effective coupling be-

tween site 1 and the left lead (or site K and the right
lead) is described by T'=g, T;, where the "sticking
probabilities, " T;, are given' by 1

—i(S;,') i . The T,'
measure the unitarity deficit of the average S matrix and
obey 0 ~ T; ~ l. Identifying the ensemble average with
the running average over energy for a single member of
the ensemble (ergodic hypothesis), we observe that T,'
measures that part of the incident flux in channel a
which is not instantaneously reemitted back into the in-

cident channel. Only this part has the opportunity to
diA'use through the disordered sample, and thereby to
contribute to the conductance. All the matrix elements,
W,'„, appearing in Eqs. (1) and (2) have been absorbed
into the T, . The width I for electron emission back into
the leads is given by (T +T )/2trpK Here, p=N/trk.
is the average level density at the Fermi energy at site j
as obtained from the saddle-point condition, which, for
v ((k, is the same at each site; whence pK is the total
level density of the disordered sample at the Fermi ener-

gy. We focus our attention on the regime of "strong ab-
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+b,, [b, , (T' x)+b—,,(T' x)].— (3)

Putting T =T =A, and with D 2xpU I /hN, we then
find from Eq. (3)

II,g = [2A[l+ —,
' K(K —1)l'r/l|D]] (4)

To establish the connection with the diffusion propa-
gator, let us first consider a "closed system,

" defined by
T' 0. In this case, the eigenvalues of H ' are given by
2x[l —cos[z(n —I)/K]], n 1,2, . . . , K. For K»1 and
small n, and in units of 2', they are approximated by
(n —1) E„where E, n h D/L is the Thouless energy
For T'WO but I ((E„we use perturbation theory to find

that up to first order, the shifted eigenvalues are given by
(2 —b„~)I + (n —1) E, . We note that the lowest eigen-
value is I &0, and changes continuously with the
strength of the coupling to the leads. It can be shown

that the time evolution of the electronic occupation prob-
ability (for an electron initially at site 1) obeys a master
equation, with ( —II ') as the generating matrix. In the
continuum limit (K De), this equation tends towards a
diffusion equation with the above-defined D as the
diffusion constant.

(iii) Results. —With T; =1, we find

sorption,
" (S,';)=0, so that ' T,' = 1 and T'= A » 1,

whence I pK» 1 ("strongly overlapping levels" ).
(ii) Diffusion propagator —.The quantity II|& is the

(1,K) element of a matrix, II, which is intimately related
to the diffusion propagator studied in Ref. 2. It is

defined in terms of the dimensionless coupling between

neighboring sites, x=(2np) t /N. The couplings T
and x, between site 1 and the left lead and site 2, respec-
tively, are equally strong when x=A, whence v /k
=A/N=(k, l) '«l. In this case, we can use first-
order perturbation theory to account for v . To this or-
der of approximation, we have

(II ');, -x[2b;, —b;)pl —b);pl]

The term 2T H~~~T consists of the probabilities, T',
to enter or leave the disordered sample, and the probabil-
ity, H]~, to diffuse through it. To elucidate the behavior
of (g), we put (K —1)/K=1, and write the contents
of the square brackets in Eq. (4) alternatively as
1+ —, n I /E, or as 1+L/Lp, where Lp=4AD/lKI
=L~QA. (Using D=UFl, where vF is the Fermi veloci-

ty, we obtain Lp=16l. ) The second form shows that for
L (Lp, (g) —A is not Ohmic and nearly independent of
L. For L » Lp, it acquires the Ohmic structure
(g) =4rrhpD/IL, which is independent of the coupling to
the leads. The first form displays the reason for the
different modes of behavior: For L (Lp, we have I +E,
and so the time, lt/E„ for diffusion through the disor-
dered sample is small compared with the emission time,
l1/I, or similar to it. In a time-dependent picture, the
electronic occupation probability, fed into the lead by the
incident flux, has time to distribute itself uniformly
across the sample before decaying back into the leads.
Since reflection and transmission are equal, (g) almost
attains the maximum value, A. For L»Lp, most of the
incident flux is reemitted into the incident channel and

only a small fraction diffuses through the sample, in

which case (g) ((A.
For the variance, we find

6

var(g) 1+ g +0(A '), (6)
n 3 [2+ y(K —1)]"

where P3 15y, P4 —2y (8y+ 15), Ps = —4(2 y
+10y +3), and Ps-20(4y +4y +1). We observe
that, independent of y, var(g) —,

' for K 1, while as
K ~, var(g) —

,
', . The dependence of var(g) on

K —1, for y s (which corresponds to taking T; = 1 for
all a,c), is shown as the solid line in Fig. 1. This line is

remarkably smooth, and nearly constant. In construct-

(g) = 2A

2+ y(K —1)
2

3 a„——1+ g.-1 [2+ y(K 1)]"—1.0

+0(A '), (5)

where al = —3y, a2=2y(y+3), a3 —2(2y +1), and
y- 2 Kl I"/AD. The first term on the right-hand side of
Eq. (5), equivalently expressed as 2T II~gT, gives the
leading contribution to (g), while the second term on the
right-hand side is the weak-localization correction which,
for L &) l, attains the well-known value ' of 3 . The lim-

it of validity of the asymptotic expansion is reached
when K is so large that both terms become about equal.
This is the case for K=3x=24A, i.e., when L becomes
comparable with the localization length, L~ =Al. Our
model does not allow for ballistic electrons. That is why
for K=1, (g) is only half the quantized contact conduc-
tance of 2A.

~ 0.5-
g$

~&e
0 e

0.0

40 80 %0

FIG. 1. The variance, var(g), as a function of the dimen-
sionless length scale K —

1 (L —i)/i as explained in the text.
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ing the dashed and dash-dotted curves, we have decom-
posed var(g) into two contributions. These are defined
as follows: The dashed line is the sum of all terms which
have the form (11it)'(IIttr) (IItrtr)", with I,m, n positive
integers, whereas the dash-dotted line contains all contri-
butions involving at least one summation over an inter-
mediate site, i.e., a j summation over terms containing

IIi, and/or II,tt. These definitions imply that the dashed
line gives that part of var(g) which is solely due to the
coupling with the channels. As L is increased, this part
falls off' with powers of E,/I, indicating an ever-

diminishing influence of this coupling. The remaining
part is the contribution to the fluctuation arising from
weak-localization eff'ects, and attains the limiting value

of l'5 for large EC, consistent with previous analyses of
var(g) for quasi-one-dimensional conductors. 4 We
note that when I & E„ the contribution to var(g) due to
the coupling with the leads is significant in maintaining
the universal character of the fluctuations.

Although the numerical value Lo/I-16 may be model

dependent, and therefore uncertain, nonetheless L p

characterizes a physically distinct length scale since, in

general, Lo is inversely proportional to T. Also, the fact
that the channel coupling terms combine with the bulk
terms in such a way as to yield a nearly flat curve for
var(g) is specific to our choice T; =1 for all a,c, and is

not universal. This is demonstrated by the dotted curve
in the figure, calculated for the choice T; 0. 1 for all

a,c. We see that for small K, the fluctuations are
enhanced by almost a factor of 2, and slowly fall oA' to-
wards the asymptotic value of i'& . Such a situation may
be realized experimentally by gating the disordered sam-

ple.
In summary, we have presented an approach to con-

ductance fluctuations which takes proper account of the
coupling to the channels, and we have displayed the
influence of this coupling on both (g) and var(g). More-
over, we have shown that a random-matrix model for the
Hamiltonian can successfully account for their universal-

ity when L))l. Although the presentation in this paper

has been focused on the two-lead measurement, an ex-
tension to multilead devices and/or rings' is completely
straightforward: The only modification required con-
cerns the structure of the matrix II ' in Eq. (3), which
must reflect the geometry of the sample and the presence
of the leads. (The latter cause the occurrence of terms
like T'.)
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