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Delocalization of Vibrational Modes Caused by Electric Dipole Interaction

L. S. Levitov

L. D. Landau Institute for Theoretical Physics, GSP I, K-osygin st 2. ., 117940, MoscowU, .S.S.R.
(Received 17 May 1989)

The electric dipole interaction of vibrational modes destroys their localization. Real-space renormal-
ization is constructed for the process of delocalization. The renormalization-group equation for the dis-
tribution of dipole parameters is similar to the Boltzmann kinetic equation. Conservation laws are found
and an 0 theorem is proven. Stationary distributions form a six-parameter manifold of fixed points.
The two-point dynamical correlation function has the form t 'F(t 't'r), where F(x) is a universal
function.

PACS numbers: 63.50.+x, 63.20.Pw, 71.55.JV, 72.15.Rn

Vibrational modes in a periodic crystal are propaga-
ting waves. If any disorder is introduced in the structure
then some of the modes become localized. Localized
states constitute a part of the spectrum near its upper
bound. The number of localized states is small when the
randomness is weak and it grows when the amount of de-
fects increases. These results are well established for
many models with short-range interaction. ' Here we

study the effect of the long-range electric dipole interac-
tion on localized states. Only dielectric materials are
considered since in metals this interaction is absent due
to screening. It is known that in systems of dimension d
with r ' interaction, localization can exist only if a & d.
For a ~ d the diverging number of resonances destroys
localized states. For a d 3 the divergence is loga-
rithmic, so the eA'ect of delocalization is ~eak. This en-
ables one to construct a renormalization group and study
the effect within its framework.

Basic mode/. —We are interested in the part of the
spectrum consisting of states localized in the absence of
a long-range interaction. The Hamiltonian can be writ-
ten as

H g 2 (p +co,'q )+ Pq;q, D;, ,

ai aj —3a; nijRj niJ (2)

where n;J (r; —rI)/~ r; —rj ~. The first sum stands for
localized normal modes, while their long-range electric
dipole interaction is given by the second term. The posi-
tions r; of localized modes randomly (but uniformly) fill

the space (denote their concentration by n). The ambi-

guity of the choice of r; is of the order of the localization
radius of the modes —this uncertainty is not crucial since
the most important contribution comes from large scales
where Eq. (2) for D;, is correct. The vectors a; are
defined by d; a;q;, where d; is the electric dipole caused
by the displacement q; of the ith oscillator. Random
numbers co; are assumed to be uncorrelated, uniformly
filling the interval [h-,h+], so their distribution function
is v(co) =2vco for 6- & co & h+, and 0 otherwise

[v (6+ —6-) ']. We take a; as random uncorrelated
vectors with some distribution function f(a): dP

f(a)d a. Since our plan is to treat the second term of
(1) as a perturbation we impose the condition A, «1
[X (a )vn, (a ) -fa f(a)d a]. The important param-
eter X plays the role of a coupling constant in this prob-
lem; its smallness is systematically used below.

Now we recall the arguments showing that normal
modes of the problem (1) cannot be localized. Consider
two oscillators having frequencies co;, coI, positions r;, rI,
and dipole parameters a;,aj. They are in resonance if
(D;J ~

+ (co; —
co, ). If this condition is true the eigen-

modes of the problem

H —,
'

(p; +co;q; )+ —,
'

(pg+coI~qj )+D;,q;qI

are not localized on one oscillator but are essentially
nonzero at both places r;, rJ. In order to establish the ab-
sence of localization we calculate n;(V), the average
number of oscillators forming resonances with the ith
one and contained in a sphere of volume V centered at r;.
We find n;(V) fnP(r)d r, where P(r) is the probabili-
ty for two oscillators separated by a distance

~
r

~
to form

a resonance. Estimating P(r) as v(a )/~ r
~

gives

(3)

The divergence of n;(V) indicates delocalization. The
weak (logarithmic) character of the divergence and
A. (&1 suggests that one employs renormalization-group
ideas.

Renormalization equation. —First, we discuss one
property of resonance oscillators that will be basic for
our approach. Let two oscillators (having labels i and j)
form a resonance. Consider another oscillator (having
label k) which is also in resonance with either of these
two. Using the result (3) one can estimate the following
probability:

P[2 ~gz, /hk; ~ 2] =k&&1 (&t,q
= (rt, rq ) )

(here 2 can be replaced by any other number of order of
1). In other words, if three oscillators placed at r;, r~, rt,
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are in resonance, then one side of the triangle (say,

~ r; —r, ~
) is much shorter than the other two

( ~ r, —rk ~, ~ r~
—rt, ~

). Moreover, our estimate implies
log2(min[t 1&1,&k, ]/& ~ ) =k '

&& 1 (again 2 can be re-

placed by any reasonable number). These results have

clear meaning: Since resonances are rarely distributed in
the "logarithmic space,

"
they are mainly formed by

pairs of oscillators Tr.iplet resonances usually do not

appear —our estimate gives the probability =A. for such
resonance to occur. Similar arguments show that the
probabilities of finding resonances of k osci11ators
(k=4, 5,6, . . . ) are =A. '. This should be compared
with the probability of a pair resonance, =A, . We see
that pair resonances occur =X, times more frequently
than k-oscillator resonances. This gives a basis for our
method. Let us truncate the r interaction at some Rp..
Put D~ 0 for all pairs (i,j) such that ~r; —r, ~

)Rp.
Find exact normal modes for this truncated Hamiltonian
(denote them Rp modes). Then replace Rp by R1 such
that R1»Rp, but klogz(R1/Rp) «1. Find R1 modes
and consider them as linear combinations of Rp modes.
According to the above discussion, R1 modes are either
single Rp modes or resonance pairs of Rp modes (one can
neglect triple and other many-oscillator resonances).
Moreover, the separation of Rp modes in resonance pairs
is =R~, while their localization radius is ~ Rp. This
enables us to treat the interaction in such resonance pairs
as the r interaction of eA'ective dipoles corresponding
to Rp modes. Consider two oscillators (Rp modes) num-

bered 1 and 2. They interact according to

H)p i (p 1'+ tp 1'q 1') + i (p 2 + 2 g 2 ) +D121l 192

Normal modes q+, q are given by

q+ cosOq]+sinOq2,

q = —sinOq]+cosOq2

[cot28 (tp1 —
tp2 )/2D12]. Their frequencies tp ~ are

defined by to~ —(tp1'+t02)tp~+tp1'co~ =D1'z. The total
electric dipole d of the modes 1,2 can be expressed as

d =a]q]+a2qp =a+q++a q, where

a+ =cosOa]+sinOa2,

a = —sinOa]+cosOa2.

This means that any mode (say, the kth one) which
comes into a resonance with a (+) mode or a ( —) mode
at some next step of the renormalization interacts with
them via the amplitude Dt, ~ of the form (2) containing
a —instead of a1 2.

Note that

ftp+ —tp f
~ JD12f =constx&a )/fr1 —r2(';

i.e., the separation of co+ and co — is much bigger than
any possible value of the interaction at all next steps.
Hence, all further resonances cannot cause any coupling
of the modes (+) and ( —). Consequently, the reso-
nances (interactions) of pairs of modes can be considered
as uncorrelated [we mean correlations at different mo-
ments of the "renormalization time" g =ln(R)].

An important analogy with the Boltzmann kinetic
equation should be stressed. The derivation of the kinet-
ic equation for rarefied gases is based on the absence of
correlations of subsequent collision processes, which, in

turn, is caused by the large mean free path of the mole-
cules [similar to our condition A, «1, see (4)]. Besides
providing the possibility of a probabilistic approach, the
largeness of the mean free path (the smallness of X) al-
lows one to not take into account triple and other multi-

ple collisions (many-oscillator resonances in our prob-
lem).

Finishing the discussion, we formulate the renormal-
ization procedure. After finding normal modes for the
R~-truncated interaction, we come to R~ modes which
can be either single Rp modes or resonance pairs of Rp
modes. Positions and frequencies of R~ modes remain
uncorrelated and uniformly distributed, while the new
distribution function f(a) of the dipole parameters must
be recalculated (according to the above discussion the
vectors a; for R1 modes can be taken as uncorrelated).

We derive a recursion relation for f(a) and f(a):

f(a) —f(a)- ' f(a1)d a1f( a) 2'dq andrvdE[b(a —a+)+8(a —a ) —8(a —a1) —8(a —a2)].

Here r =r1 —r2, E =
~

cp1
—tp2 ~

) 0, and n, v, a+,a are defined above. It is convenient to introduce a new variable r
instead of E according to E =2D]qr. The variable r defines the angle O of the rotation transforming a],a2 to a, a
(see above). The usefulness of r becomes clear from the identity

d r dE = (2
~

r1 —r2 ( ) D12 ~
)d (ln

~
r

~
)d 0 d r .

Here d 0 is the area element of the unit sphere corresponding to the unit vector n1q. Since the product [ r1 —rq ( [ D1q (

depends not on [r1 —rq[ but only on n12 one can integrate Eq. (7) over )r [ and find that its right-hand side
=kin(R1/Rp) « 1. Hence Eq. (7) can be transformed into a differential form by taking (=ln(R) as a renormalization
"time":

f(a) =nv„Idrd a1d a2f(a1)f(aq)Q(a1, a2)[8(a —a+)+8(a —a ) —6(a —a1) —6(a —a2)],
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g(~)
0.8 o.8-

nances are taken into account. Let us show that such
resonances do not destroy the conservation of &a,a~}
(a,p=x, y, z). Consider k oscillators forming a reso-
nance system:

Hi, = —,
' gp + —,

' gK;, q;q, (i,j =1, . . . , k) .

FIG. l. Function Q(a) defined by Q(a, b) 4irl a I I b I

x Q(a) (a is the angle between the vectors a,b). Q(a) is shown

in the interval [O, z/2]; for other a it can be found using
the identities Q(a+'z) Q(a), Q( —a) Q&a). Since
max[Q(a)] Q(0) -4/3 J3 0.7698. . . , min[Q(a)] Q(n/2)

2/ir 0.6366. . . , the function Q(a) can be approximated by

Q 0.5 [Q(0)+ Q (n/2) ] 0.7032. . . with an accuracy of
10%: I [Q(a) —

Q ]/Q I
&o.l.

where

Q(a~, a2) = do I ai a2 —3a~ na2 n I .

One gets the following for Q(a, b): Q(a, b) =4m
x

I a I I b I Q(a), where Q(a) is a function of the angle a
between the vectors a, b (Fig. 1). Note that Q(a) can be
well approximated by a constant Q* 0.7 with a reason-
able accuracy of 10%.

Concerning Eq. (8) our main task is to find and study
its solutions f(a, g) such that f(a, 0) =f(a), the micro-
scopic distribution of vectors a;. Of considerable interest
is the asymptotic behavior of f(a, g) at g ~, related to
important dynamical characteristics of the problem (see
below). Our analysis of Eq. (8) will be strongly motivat-
ed by its analogy with the Boltzmann equation.

Integrals of Eq. (8).—First, we prove the conservation
of &a'): t]&a')/|l& -0 or

„af(a, g)d a =„af(a, (=0)d'a
for all g. The proof follows from the identity a+
+a =a~ +aq (see above). This result is analogous to
the conservation of energy for the Boltzmann equation.

Besides &a ) there exist other invariants of Eq. (8).
Consider the three components of the vector a =(a„,
a~, a, ). Using the same method one easily finds that
each of the six quantities &a„), &a~), &a, ), &a„a~), &a~a, ),
&a,a„) is conserved when f(a, () satisfies Eq. (8).

One might suspect that the conservation of these
quantities is an approximate result which fails when not
only interacting pairs but also many-oscillator reso-

The variables q; are connected with normal modes q by
a transformation q; =R;jqk, where R is an orthogonal
k xk matrix. From the expression for the electric dipole
of the system d Pa;q; Pa q we find the transforma-
tion rule for a;: a; R jsk We see that the vectors a;
are transformed exactly as the variables q;. The ortho-
gonality of the transformation matrix R enables one to
repeat the above given calculation and check the invari-
ance of the quantities &a,ap).

Further results of Eq. (8) can be obtained only for its
approximate version which we get by replacing Q(a~,
a2) 4nQ I a i I I a2 I in (8) (the error introduced by
this replacement is ~ 10%). The modified Eq. (8)
[denote it Eq. (SM)] turns out to be much more treat-
able. It has some exact properties resembling those of
the Boltzmann equation. Since the theories for Eq.
(SM) and for the Boltzmann equation are completely
parallel, we only quote the results (proofs will be
presented elsewhere).

(I) Invariants: The quantities &a,a&) are invariants of
Eq. (8M), not only of Eq. (8).

(II) H theorem: Let f(a, g) satisfy Eq. (8M). Define
"entropy" H as

H[f] —
J In[I a I f(a,g)]f(a, ()d3a .

The function H(g) =H[f(a, g)] grows monotonously:
t]H(g)/|lg ~ 0.

(III) Stationary solutions of Eq. (SM): All station-
ary solutions of Eq. (SM) are fo(a) =A

I a I

xexp( —a,G,tiara), where G is a positively defined sym-
metric 3X3 matrix [3 depends on G, since f(a) is nor-
malized: ff(a)d a=1].

(IV) Maximum of entropy: The entropy H[f] reaches
its maximal value for the distributions f6(a). More pre-
cisely, consider all functions f(a) such that
ff(a)d a 1, fa,aaf(a)d a =G,p (a,p=1,2, 3). Then
always H[f] ~ H[fG]; H[f] =H[f6] only if f(a)-fG(a).

The stationary solutions fa(a) are analogous to the
Maxwell distribution which is conserved by the
Boltzmann equation. An important distinction is that
the Maxwell distribution has only one free parameter
(temperature), while the distributions fg(a) are charac-
terized by six parameters G,ti (a,P =1,2, 3; a ~ P). Note
that the existence of the six parameters is directly con-
nected with the conservation of the six quantities &a ap).

Thus, we see that the asymptotic properties of the
solutions of Eq. (8M) are very simple: Any solution con-
verges to one of the stationary distributions fG(a). The
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parameters G,p are completely determined by second
moments of the initial distribution f(a, (=0).

Unfortunately, none of the results (II), (III), or (IV)
can be extended to the case of Eq. (8). Nevertheless,
some understanding of its asymptotic properties can be
reached if we utilize the closeness of Eq. (8) and Eq.
(8M). Clearly Eq. (8M) defines a dynamical system in

the space of all distributions f(a) [Eq. (8) does the
same]. The analysis of Eq. (8M) presented above en-

ables one to extract two main features of this system: (i)
Six integrals of motion (a,as) decompose the phase space
into a bundle of invariant surfaces labeled by six param-
eters. (ii) Restricted on each of the invariant surfaces
the system has one attracting fixed point fo(a). The
properties (i) and (ii) fully characterize the qualitative
picture of motion guided by Eq. (8M). As for Eq. (8), it
undoubtedly satisfies condition (i) and apparently
possesses property (ii): According to the theory of
dynamical systems the property (ii) is "rough, " i.e., it

cannot be destroyed by small changes of the system. For
making use of this roughness we have to assume that the
difference of right-hand sides of Eqs. (8) and (8M) (es-
timated as 10%%uo) is sufficiently small. Of course this ar-
gument is not very convincing, so the property (ii) needs
more investigation (perhaps numerical). Nevertheless,
here we take it as being well established and formulate
its consequences: (a) Every solution f(a, g) of Eq. (8)

converges to a stationary distribution as g ~, (b) sta-
tionary distributions form a six-parameter set, where the
parameters can be chosen as G,s =Ja,attf(a, (=0)d a.
We come to the main conclusion: The renormalization
group Eq (8). has a six di-mensional manifold of non

trivial axed points parametrized by symmetric positive
ly defined 3 x 3 matrices

Some implications of this result for the dynamics
should be finally mentioned. Fixed points of our dynami-
cal problem are stable under rescaling (r, t ) (Zr, Z t).
Hence, all dynamical correlation functions depend essen-

tially only on the combination t ' r. For example,
the two-point energy-energy correlation function (E(r, t)
xE(0,0)) is given by K(r, t) =t 'Fo(t 't r), where

Fo(x) is some universal function of x depending also on

G,~ [energy is conserved, so jK(r, t)d r =1]. Thus the
dynamics is slower than diffusive: R =T't .
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