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Nonlinear Mixing of Light-Pressure Forces in a Three-State Atom
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Nonlinear mixing of wave vectors present in the field driving a three-state atom may generate long-

wavelength optical forces whose eff'ect on the motion of the atom exceeds by orders of magnitude the

influence of the forces familiar from two-state atomic models.
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Temperatures below the Doppler limit' predicted by
two-state atomic models, supermolasses which holds

atoms much longer than the ordinary molasses, and in-

homogeneities in the distribution of atoms in optical mo-

lasses constitute prime examples of unexpected results
obtained in recent experiments on laser cooling of atoms.
A consensus seems to be forming that the abnormally
low temperatures reflect the interplay between the multi-

state level structure of atoms and the spatially varying
polarization direction of light, but the spatial properties
of the atom clouds remain unexplained.

To this end I would like to draw attention to the work

of Kazantsev and Krasnov. They investigate light-pres-
sure forces of a bichromatic field acting on a two-state
atom. Kazantsev and Krasnov point out that the non-

linear mixing of the forces corresponding to each indivi-

dual light field may create long-wavelength components
in the optical force that command a large influence on

the motion of the atom. The present Letter is based on

my realizing that mu!tistate systems analogous to those
abounding in the experiments ' exhibit a similar
"rectification. "

By analyzing a three-state model atom
in various standing-wave fields, I present examples in

which the variation of the kinetic energy of the atom
traversing the interference pattern of the fields far
exceeds the predictions from a two-state atomic model.

I consider a three-state atom with the A configuration
of states (Fig. 1). Its two arms are driven by low-

intensity fields E~ 2(r)e'""+c.c. with the same linear
polarization but possibly diAerent detunings ht ~, defined

positive if the laser is tuned above the respective reso-
nance. For simplicity I assume that the dipole moment
matrix element d and the spontaneous decay rate y are
the same for both arms of the A system, so that the
linewidth (half width at half maximum) of both transi-
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FIG. 1. Scheme of the three-state atom.
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If the light beams are parallel and have the same wave-

length, kl k2 ——k, then the force is in the direction of
k and its amplitude as a function of position is

Fosin(2k. r). By further setting R~(0) =R2(0), A~ =62
=—6 in (3), Fosin(2k r) also gives a good approximation
of the force on the two-state atom obtained by removing
one leg of the A. ' The force varies as a function of po-

tions 1 3 and 2 3 is taken to be y as well. I omit
the velocity dependence of the forces, and hence laser
cooling. Furthermore, I work at low enough intensities
that saturation of the excited state 3 is negligible, and
leave out of my considerations the nonabsorbing two-
photon resonance.

Under these conditions optical pumping first estab-
lishes a steady-state distribution of population among the
states 1 and 2, and subsequently the dipole forces ' of
the fields acting on the transitions 1 3 and 2 3 sim-

ply add. Taking the detunings to be large enough that
only the stimulated component of the force has to be re-
tained, I obtain the force on the atom

tt (A) R2VR ) +92R ) VR2)
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Here

2d'
l E, l'(r) y

g 2(g2+ 2)

are the light-induced rates for the transitions i 3. It
should be recognized that, while the nonlinearity of (1)
with respect to field intensity superficially resembles sat-
uration of a two-state system, here the nonlinearity
arises from the equilibrium populations of states 1 and 2
as dictated by optical pumping, R2/(R~+R2) and Rt/
(Ri+R2).

I study Eq. (1) in the case when the fields acting on
the atom are both standing waves, E;(r) =ecos(k;. r).
To facilitate easy appreciation of the results I introduce
the scales of force and potential energy,

& l&ski+&2k2l Ri(0)R2(0)
2y[R, (o)+R,(o) 1
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sition with the period of half the wavelength, suggestive
of trapping of atoms to the nodes or antinodes of the
field. However, at least within the two-state theory no

trapping takes place because the corresponding max-
imum variation of the potential energy, given by Uo,
turns out to be smaller than or at most comparable to the
minimum kinetic energy of the atoms attainable with

laser cooling.
I now assume that the wave vectors of the fields are

parallel to, say, the z axis, but that their absolute values

are different; Bk =k 2
—k i &0. The force has Fourier

components at + 2k' 2 because the field intensity has.
But, as a result of the nonlinear mixing, the force may be
expected to have Fourier components also at the wave

numbers + 28k.
To demonstrate the size of such components I plot in

Fig. 2 the potential energy of the force field in units of
Uo as a function of the dimensionless variable i bk i z/z.
k i and k2 are chosen commensurate in such a way that
the range of z in Fig. 2 spans 64 spatial periods of field 1

and 63 periods of field 2. I set h,
~
=62 & 0, and the ratio

of the pumping rates is r—=R2(0)/Rl(0) =2. By its very

definition, one unit of the vertical axis represents the
largest peak-to-peak variation of the potential energy at-
tainable with Bk 0. The variation in the figure is much

larger.
The expansion of (1) into a power series of the vari-

IVq

2

0

able 1 —r and a subsequent numerical Fourier analysis

show that for h,
~
=h, q, r 1, and in the limit when the

difference of the wave vectors 6'k is small compared to
their average k—= (kl+k2)/2, the long-wavelength com-

ponent in the force is given by

FL(z) =0.09296sgn(A|)(1 —r) sin(2bkz)F0. (5)

In this asymptotic limit the amplitude of FL is indepen-

dent of Bk, so that the peak-to-peak amplitude of the

corresponding potential is inversely proportional to the

difference of the wave numbers k 1 and k2.

y,„—y;„-0.09296 Uo.k (1 r)—
A small difference Bk implies a deep confining potential

well for the atoms in the z direction. The price one has

to pay is that the confinement is soft, over a long spatial
scale. The force at the spatial frequency 28k may be 10
times smaller than the force acting on the scale of a

wavelength, but it may still yield a much larger value of
work on the atom because it points in the same direction

over a longer distance.
The long-wavelength force of the origin I have de-

scribed may already have been seen in experiments in

which a beam of sodium atoms was deflected by two

standing waves. The authors discuss their results in

terms of bichromatic excitation of a two-state system,
but the fact that the frequency diff'erence between the

two waves was close to the hyperfine splitting of the sodi-

um ground state suggests that optical pumping may have

played a role. Unfortunately, the authors do not provide

enough data for a quantitative comparison between two-

and three-state theories.
Also in the optical-molasses experiments' on sodium

there are two frequencies present to prevent optical

pumping to one or the other of the hyperfine levels F 1

and F 2. The frequency difference is of the order of 2

6Hz, though, and the associated length scale z/bk —10
cm is much larger than the size of the molasses. In

search of a model that might simulate structure within

the molasses, I therefore turn to the case of two

misaligned beams.
I write the wave vectors of the two fields as

Z i5ki/Tr

FIG. 2. Potential energy of the force field as a function of
distance for two fields whose propagation vectors are both in

the z direction but whose wave numbers are different,
bk kl —k2&0, for the parameters r 2 and Al =52) 0. The
individual wave numbers k l and k2 are chosen such that the re-

gon of z shown in the figure covers 64 periods of field 1, 63
periods of field 2, and 2 periods of the nonlinear-mixing force
with wave number 28k. The potential is plotted at equidistant

points, and the spread of the points gives an impression of the
variation of the potential on the scale of a wavelength

X = 2x/kl = 2m/k2.

kl ke„, kq=k(cosine„+singe~) .

In the example of Fig. 3 the ensuing force field is plotted
for an angle p such that the x direction accommodates
512 spatial periods of field 1 and 511 half periods of field

2, and the y direction —,
' period of field 2. This area,

which in both the x and the y direction houses precisely
one period of the force components at ~ 2(kl —k2) gen-
erated by the mixing, has been scaled to a square, al-

though in reality the region shown is about 23 times
longer in the x direction than in the y direction. A
Fourier-transform low-pass filter has been applied to re-
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(b)

l,

l —r
E~,max = o.5 Up.

revealed more easily, but there seem to be none. The
force parameters are r =Rq(0)/Rl(0) =2, and hl =hq
~08

In one set of numerical experiments Newton's equa-
tions of motion of an atom were integrated in force fields
such as in Fig. 3, starting at x =0, y =0 with velocity at
an angle —p and kinetic energy equal to Up. Thanks to
the periodicity of the force, these initial conditions corre-
spond to sending the atom along the direction of the
forces down from the upper-left corner of Fig. 3(a) or
3(b). Large-scale oscillations in the kinetic energy were
found. In the limit IpI « I 1

—r I «1 and for hl
& 0 the maximum kinetic energy was empirically given

by

3/2

FIG. 3. Long-wavelength component of the force field in the
x-y plane for the case of two misaligned beams with the angle
between them being y arccos(1023/1024), for r 2 and

h, q &0. The drawings cover one period of the force, i.e.,
the next column to the right would repeat the first column and

similarly for the rows. The figures have been scaled to a square
even though the range of the x coordinate in reality is about 23
times the range of the y coordinate. In (a) the force is shown

unscaled, while in (b) the Cartesian components of the force
have been scaled in the same ratio as the spatial x and y coor-
dinates. The length of the pins in the picture is proportional to
the value of the force, and the force points away from the
round head.

The nonlinear mixing may again create long-wavelength
forces whose eA'ect on the kinetic energy of the atom
enormously exceeds the eA'ects of the simple force field
with k) k2.

If the detunings and hence the sign of the force are re-
versed (tuning below resonance), Figs. 3 show that the
force tends to restore the atoms to the diagonal, to the
maximum of the interference pattern of the two driving
fields. As the force is not conservative and cannot be de-
scribed in terms of a potential, I have not so far found a
quantitative description of this "trapping. " It is clear,
though, that the light field can guide atoms along its in-

terference pat terns.
To demonstrate the dift'erence between the two- and

three-state models I note that in a pure two-state system
driven by a monochromatic field with an arbitrary spa-
tial field distribution E(r), the stimulated-emission force
is conservative. When saturation is allowed for, the de-
pendence of the potential energy on the intensity is of the
form

move force components with I k e„ I
) 1.5k. Figure

3(a) displays the true direction of the force, while in Fig.
3(b) the components of the force have been scaled by the
same factor as the spatial coordinates. Under the latter
scaling, flow patterns such as vortices might have been

V(r) A In[1+BE (r)], B)0.

While the absolute value of the potential increases with

increasing intensity, the potential obtained by superim-

posing two fields never exceeds twice the sum of the po-
tentials of the two fields taken separately:

I VE, +E, I
- l»n~l+B(E|+E»'~

I
( IA lnII+»(El'+E~) j I

«2
I VE, + VE, I (10)

The valleys and hills of the potential in Fig. 2 coincide
with the maxima and minima of the interference pattern
of the two driving fields, but the potential is not large or
small simply because the intensity is high or low. It is

easy to prove that the nonlinearity of a saturated two-
state system could not generate the result of Fig. 2; the
optical-pumping nonlinearity of a three-state system ob-
viously can.

In summary, the nonlinear mixing of wave vectors of

the driving field taking place in a multistate atom may
create long-wavelength components in the force. Such
forces may be comparable in strength to the ordinary in-

duced forces known from two-state theories; hence their
eAect on the atomic motion accumulated over a mul-

tiwavelength spatial scale may vastly exceed the net ac-
celeration or deceleration due to the same field con-
figuration acting on a two-state atom. An experiment to
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demonstrate this prediction may have been carried out
already, although the authors themselves interpret their
findings in terms of the action of a bichrornatic field on a
two-state atom. At any rate, Ref. 9 serves as a template
for a possible experiment.

The A system does not support any mixing of the
forces at all if both fields consist of traveling waves (in-
stead of standing waves), and an immediate application
of my model to optical molasses falls through. However,
in a realistic optical molasses three orthogonal and or-
thogonally polarized pairs of counterpropagating waves
all drive basically the same transitions between degen-
erate atomic levels. Opportunities for wave-vector mix-
ing are far more numerous than in analytically treatable
few-state models, and a numerical theory that incorpo-
rates both the atomic-state structure and the fully
three-dimensional light field is called for. That is an ex-
tremely ambitious undertaking, but might pay off'. I
speculate that we presently see just the tip of the iceberg;
that the new type of force mixing becomes the rule rath-
er than an exception as the level structure of the atom
and/or the light-field configuration get more complicat-
ed; and that with an improved understanding, a whole
field of atom trapping with mixing forces may open up.

I thank Phillip Gould for initially bringing the work of
Kazantsev and Krasnov to my attention, as well as for a
number of discussions. I am also grateful to Paul Lett
for his pointing out Ref. 9 to me. This work is partially
supported by the National Science Foundation, Grant
No. PHY-8902659.
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