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Aharonov-Bohm Scattering of Particles with Spin

C. R. Hagen
Department of Physics and Astronomy, University of Rochester, Rochester, lvew York 14627

(Received 27 March 1989; revised manuscript received 30 October 1989)

The scattering of relativistic spin-one-half particles in an Aharonov-Bohrn potential is considered. It is

shown that earlier approaches to this problem have neglected a crucial delta-function contribution to the
potential. By formulating the problem with a source of finite radius which is then allowed to go to zero,
it is established that it is the delta function alone that causes solutions that are singular at the origin to
become relevant. The changes in the amplitude which arise from the inclusion of spin are seen to modify
the cross section for the case of polarized beams. Finally, the calculated Aharonov-Bohm amplitude is

shown to describe the scattering of particles with arbitrary spin in the c ~ limit.

PACS numbers: 03.65.Bz

The Aharonov-Bohm effect' has long been recognized
for its crucial role in demonstrating the importance of
potentials in quantum mechanics. More recently, in-

terest in this topic has been stimulated by the consider-
able effort currently being expended on the study of
(2+ 1)-dimensional models in both superconductivity
and particle theory. With the increased application of
the results of Ref. 1 to other problems (e.g. , Ref. 2) it
has become important that certain limitations on the
original Aharonov-Bohm calculation be removed. This
has been accomplished in a recent series of papers.

A concern which has been increasingly addressed of
late has to do with the question of how the inclusion of
spin modifies the results of Ref. l. In particular, Alford
and Wilczek have applied their calculations for Dirac
particles to the interaction of cosmic strings with matter.
They assert that the scattering amplitude is unaff'ected

by the spin, a result which certainly follows if one ac-
cepts their requirement that the upper component of the
two-component spinor be regular at the origin. On the
other hand, Gerbert and Jackiw have suggested a more
general boundary condition which introduces a new pa-
rameter into the calculation. This has been applied to
the question considered in Ref. 5 with quite different re-
sults being obtained. This paper approaches the same
problem by attempting to infer the behavior of the wave
function at the origin in terms of the underlying physics.

One begins by writing the Dirac equation for a parti-
cle of mass M which, in terms of two-component spinors
P', 1S

Etir [MP+Py" II]y

where the matrices P and Py; are conveniently defined in

terms of the Pauli spin matrices as

p 03 py; = (o,sa2)

and s is twice the spin value (+1 for spin "up" and —1

for spin "down"). The form (1) follows most simply by
using the decoupling of the usual four-component Dirac
equation in the absence of a third spatial coordinate into
two uncoupled two-component equations for s =+ 1 and

where the potential A, is related to the magnetic field in

the usual way

H VxA. (2)

Since one is generally interested in the situation in which

H is restricted to a flux tube of zero radius, it is conven-
tional to write

eH —(a/r )b (r ), (3)

with r being the two-dimensional radius vector. In the
Coulomb gauge this yields for 8; the result

eA; ae~lx, /r '. (4)

It is crucial to the solution of this problem that note be
made of the fact that (1) and (2) imply

(E —M ) tir
—yIIyIIttr = [II + ascr3(1/r)6(r)] tlr. (5)

Equation (5) clearly shows that the individual com-
ponents of y do not satisfy the equation solved in Ref. 1,
but rather an equation with an additional delta-function
interaction. This essential aspect of the problem has not
been recognized in earlier attempts to include the ele-
ment of spin.

In order to avoid complications arising from the fact
that the delta function in (5) occurs at a singular point
of the diAerential equation, one adopts here what is

probably the only reasonable alternative, namely H is

spread out over a region r ~ R such that

e Hr dr —a.
Although one is otherwise free to use any form of H
[provided only that a contribution of the form (3) is ex-
cluded], the calculation is most easily performed if one

s = —1. This approach diA'ers from the usual one which
selects a particular value for s and will serve to make the
results obtained more useful and transparent, The quan-
tity H; is given by

1I; =(1/i)8; —eA;,
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1 d dr
r dr dr

2

+k f (r)=0, r&R,

replaces (3) by

eH = —(a/R)8(r —R)
and (4) by

ae;, x,/r', r & R,
eA' 0, & R

with the understanding that the limit of R 0 is to be
taken at the end of the calculation. Thus one considers
(for a positive-energy solution) the set of equations

f (R e—)-f (R+e),
R+E

R f =asf (R) .
d
dr R —t.

(7)

The solution for f (r) when r &R is standard since
normalizability (and/or the need to avoid the introduc-
tion of spurious delta functions at r =0) implies

f (r) =C Ji i(kr), r &R.

The eAect of the delta function is then taken into ac-
count by means of the continuity relations

1 d d
r dr dr

m+ +k f (r)=0, r&R,
r

where k F. —M and the f (r) are the Fourier
coefficients which occur in the expansion of the upper
component yi of the total wave function, i.e.,

yl = g a f (r)e' '. (6)

For r & R, f (r ) is required to have the form

f (r) =8 Ji +, i(kr)+8 J-i +, i(kr),

where A, B, and C are constants and the J's are the
usual Bessel functions. Upon applying (7) one obtains
for the unnormalized f (r) for r & R (to lowest order in
kR)

f (r)-(kR) I~I (kR)
—l~+. I 1+ lmI+as J (k„)+(kR)i~+.i I I+ J (k„)

The R 0 limit then clearly implies that the
J —

i i, i(kr) term must drop out of (8) unless

Im+aI = —ImI —as. (9)
or

m —N —1, N+1~0, s=+1. (1 lb)

f (r) J —i~+, i(kr)

in the limit R 0 provided that

I m I +as+1 & 0

or, upon using (9),

Im+aI & l.

(10)

This shows that the admissible solution of the Dirac
equation in the limit R =0 is always the regular solution

Ji +, i
(kr) unless (9) and (10) are simultaneously

satisfied. Upon writing

a =iV+P,
where N is an integer and

0(P&1,
one can now establish that in Eq. (6) f„,(r) is always
J

i „,+,
i
(kr ) unless

m= —N, N)0, s= —
1 (11a)

In that case one must include the next higher power of
kR in the coefficient of the Ji i, i(kr) term in (8).
This yields

f.(r) -(kR) jD.(kR) '""Ji.+.i(kr)

+(kR) "J
i +, i(kr)I,

where D is a nonvanishing constant. One now infers
that

As a check on the plausibility of the results obtained it
may be noted that (9) implies that as &0 in order that
J—

i
i, i

(kr ) be an admissible solution. Since this is
seen from Eq. (5) to be precisely the condition necessary
for the delta function to be an attractive potential, one
has the intuitively reasonable result that only an attrac-
tive delta function has the capability of making the solu-
tion more concentrated at the origin than is the regular
solution Ji +, i(kr).

Before going on to a calculation of the scattering am-
plitude some remarks are in order. In particular it is to
be noted that in the nonrelativistic and in the relativistic
spin-zero cases one must discard the as term in (8) so
that it is always the regular solution which is correct.
Thus the Aharonov-Bohm amplitude is the standard re-
sult in these two cases. This simple observation allows
one to conclude that there are no bound states in either
of these applications since a bound state requires a deli-
cate cancellation between the e '"" terms in the asymp-
totic expansions of the two solutions of Bessel's equation.
The argument against bound states in the spin-one-half
case is virtually identical and follows simply from the
fact that it is always either Ji +, i(rk) or J

i +, i(kr)
which is correct.

One can now calculate the scattering amplitude in a
fairly direct manner. ' It is readily found that the phase
shifts 6 are identical to those of the spinless case, i.e.,
Bm = ——,

'
tr[I m+a

I

—
I m I] except for the cases (11)
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for which there is a sign reversal. The wave function y]
is given by

y~ =~e i(s/2)
I
m+ a

I I (kr )eimSl~+~l r e

+g( )g( )e
—i(N+1)A i—(a/2)(a —N —

l )I (k&)

+ g( )g( ) &)VCe &(a/2)(iV a)J (kr) (12)

where the prime on the summation indicates the omis-

sion of the two terms specified by Eq. (11) and generous

use has been made of the step function

g(x) =——,
' (1+x/ix i ).

An important observation to be made here is that when
(1) is used to compute the lower component (i(2 the in-

tegral of the scalar product @*@=A~*@]+y2y2 over a
region including the origin is found to exist even for the
case when ]I[1~ contains an irregular solution. It can also
be seen that the Hamiltonian is self-adjoint. This is par-
ticularly satisfying since neither normalizability nor
self-adjointness has been imposed on the solution.

Using (12) the amplitude can now be obtained as

1/2

f((t)) =fgs((/))+ '
sin()ra)e

s

(&/2g( s)e —i(is(s)/2 (13)

e
—i(t)/2

1 —ikr Cosr/) —iay—k/(E+M) '
1

k/(E+ M) (is)

From Eq. (14) it follows that the scattering cross sec-
tion, while identical to the standard Aharonov-Bohm re-
sult for unpolarized beams, is modified when the spin of
the scattered particle is preferentially oriented in a direc-
tion perpendicular to the flux tube. Thus for a beam po-
larized along the direction of the unit vector n one finds
that

da
dy

2

[1 —(n x i) 'cos'(()/2],
2nk cos ((i/2

where e(x) =x/~ x
~

and f~2)(p) is the (corrected )
Aharonov-Bohm amplitude

' I/2

f~a(y) -— i sin (za) e

2zk cos(() 2

(It has been assumed that the incident wave is from the
right. ) Worth noting is the invariance of (13) under
a —a, (()

—
((), and s —s, thereby verifying an

important symmetry implied by Eq. (5). The result (13)
can be written more compactly as

&/z

((()) =- i sin()ra)e
2)rk cos())/2

Xe ie/2 ( )
—its(s)e( ——as) (i4)

while the complete two-component wave function is
given by the asymptotic form

where i is a unit vector parallel to the flux tube. (Note
that in this expression a and z are three-dimensional vec-
tors. ) In the optimal case in which n and z are perpen-
dicular there occurs a complete cancellation in the cross
section for backward scattering (i.e., &=0). For other
choices of n the spin effect is an energy-dependent but
angle-independent reduction of the scattering cross sec-
tion. Measurement of such effects may well be experi-
rnentally feasible.

The existence of singular states as displayed in Eqs.
(11) and (12) has another important consequence which

deserves mention here. It has already been pointed out
that bound states cannot occur in this system even with

the inclusion of spin. The remarkable thing, however, is

that the spin effect puts one precisely at the threshold of
binding in channels described by the quantum numbers
(11). In the usual case the condition that the wave func-
tion y vanish at the origin requires that the potential
must exceed a certain minimum strength in order for y
to be capable of being smoothly joined to a decaying ex-
ponential as is necessary for the existence of a bound
state. In one spatial dimension, of course, there is no re-
quirement that y vanish at the origin and consequently
arbitrarily weak attractive potentials lead to binding. In
the present application the occurrence of states which
have singular wave functions at the origin means that ar-
bitrarily weak attractive potentials must lead to bound
states. This is an aspect which has an obvious and po-
tentially far reaching impact on superconductivity appli-
cations.

A significiant extension of the domain of applicability
of Eq. (14) is accomplished by noting that the Galilean
limit of (1) is obtained by setting E =M+(' and letting
2M+ 8 2k'. The resulting equation

[8 —, (1+a' )+M(1 —(r ) —a II, —s(r21I2](//=0 (i 6)

is covariant with respect to Galilean transformations in

2+1 space and is, in fact, the Galilean spin-one-half
equation of Levy-Leblond when the third spatial coordi-
nate is absent. One thus can infer immediately that
Galilean spin-one-half particles are described by Eqs.
(14) and (15) provided that E +M is replaced by 2M
and the wave number k takes its "nonrelativistic" value
(2M( ) '/ . While this is of no particular interest in itself
(since a limit of a more general expression is involved),
the significant point is that (16) is the correct Galilean
equation for arbitrary spin in 2+1 space. In other
~ords a Galilean particle of spin S is described by the
two-component wave function (/f of Eq. (16) provided
that the identification s =e(S) is made. One thus con-
cludes that the Aharonov-Bohm amplitude is given
correctly by Eqs. (14) and (15) in the Galilean limit.
Further refinements of this result using fully relativistic
wave equations for spin greater than one-half can there-
fore only yield corrections of order I/c to the results ob-
tained here.

The author is indebted to R. E. Marshak for a helpful
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Note added. —The crucial role played by the singular
states discovered here is apparent in a recent calculation
of the second virial coefficient of a system of Aux-

carrying fermions.
Appendix. —It is shown here that the condition in-

voked in this paper that H be confined to the surface of a
cylinder of radius R is not essential to the principal re-
sult. Thus the conclusions of this paper will be seen to
apply to any magnetic field which is independent of an-

gle and which vanishes for r )R. In particular there is
no dependence on the detailed form of H in the limit
R 0 provided only that

lim H(r')r'dr'=0.
p4 p

One begins with the diA'erential equation

1 d dr +k 2+Hs-
r dr dr

—
A& +2mA& —@=0,

r

r&R,
where

H F(r), A~ — r'dr'F(r') .r4p
Upon introducing the dimensionless variable x=r/R
there results

where R F(r) f(x). Next, one drops terms propor-
tional to (kR) and considers separately the two cases
(a) m=0 or s =e(m) and (b) s = —e(m).

In case (a) one makes the substitution

Z

y(x) =x I I exp —s„dx'a(x') g(x),

where a(x) =RA~(r) thereby yielding

1 d d +2ImI d
x dx dx x dx

—2sa(x) g =0,d
dx

which has the regular solution g =1. This represents the
desired (i.e., regular) solution of the differential equation
for r & R and leads to an immediate evaluation of the
logarithmic derivative at r R,

~]
y'(1)/y(1) = Im I

—s xdxf(x)
- Im I+sa.

WZ

y=x I I exp —s dxa(x') g(x)

and obtains

To complete the calculation in case (a) one now requires
continuity with the logarithmic derivative of a solution
valid for r & R. However, the subsequent analysis is vir-

tually identical to that in the text between Eqs. (7) and

(11) and the result is thereby proved.
Case (b) is only slightly more complex. Here one

writes

x + (kR)d d, m'
x dx dx X X

+Z
x'dx'f(x')

2

X
1 d d 2ImI d d—2sa(x) g(x) =0.
x dx dx x dx dx

2m ~x
+ x'dx'f(x')+sf(x) @=0,

X

f x

y„s(x) =x I ' exp —s dx'a(x')

which yields

y,'.s(1) = —Im I

—s xdxf(x)+

The solution @=1 is in this case not a regular (i.e., ad-

missible) solution of the problem, however. One thus

uses the Wronskian to obtain

x r x'
dx'x I I

—'exp 2s a(x" —dx"J p J p

expI2s foa(x')dx'I
fodxx'I I 'expI2s foa(x')dx'1

Since the last term in the above is positive, the regular
inside solution can be joined to an outside solution
J-

I
i, I(kr) only if

—Im+a I
) —

I
m I +sa.

This can be shown to imply

c(m) t. (m + a ) ) 1,
which, of course, is never true. Thus irregular solutions
are quite generally disallowed for s = —c(m). Since this
is identical to the conclusion obtained in Eq. (11), the
proof is complete.
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