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Scaling Behavior of Localization in Quantum Chaos
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The kicked rotator on a torus is a system with a bounded phase space in which chaotic diffusion occurs
for a large enough perturbation strength. The quantum version of this model exhibits localization effects
which produce deviations from random-matrix-theory predictions. We show that these localization
effects display a scaling behavior which is a counterpart of the scaling theory of one-dimensional Ander-
son localization in finite samples. We suggest that this behavior can be highly relevant to some general
problems of quantum chaos.
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The kicked rotor (KR) was proposed many years ago
as a simple model for the investigation of quantum
chaos. ' The most important result obtained up to now is
that the quantum KR never reproduces the unbounded
diffusion in momentum space that characterizes the clas-
sical KR in its chaotic regime. It can, at best, exhibit
diffusivelike excitation (in momentum) only on some
finite time scale. This "quantum suppression of chaotic
diffusion" turned out to be a rather general occurrence in

the dynamics of systems subjected to time-periodic per-
turbations; for example, this very phenomenon lies at the
heart of a recently developed theory for the quite
different problem of microwave ionization of highly ex-
cited hydrogen atoms. An important insight on the
nature of this suppression was provided by a formal anal-

ogy of the quantum KR with a localization problem for a
particle on a one-dimensional lattice with a pseudoran-
dom potential; indeed, the quantum limitation of
diffusion for the KR and related models has a definite
similarity with the Anderson localization of solid-state
physics. In order to stress this analogy without overlook-
ing certain conceptual differences the quantum limitation
of diffusion is sometimes referred to as "dynamical local-
ization. " Thanks to this connection the quantum chaol-

ogy of periodically driven systems could take advantage
of important concepts from solid-state physics. In the
present paper we purport to push this analogy one step
further by demonstrating the relevance of localization
theory to the study of quantum chaos in systems which,
unlike the KR, have a bounded phase space. As a
matter of fact, the classical KR can be considered as a
dynamical system on the torus by exploiting its intrinsic
periodicity in momentum space. An analogous "folding
back on the torus" can be performed for the quantum
KR too, ' for particular "resonant" values of the kick-
ing period (see also Ref. 11).

Whereas the original "unbounded" KR could be for-
mally associated with a localization problem on a 1D
infinite lattice, the KR "on the torus" corresponds to a
localization problem on a finite 1D sample; the Bloch
theorem applies, the Bloch number being related to
different choices of boundary conditions.
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where the y function is taken in the middle between two
successive kicks ' and t is now the discrete time defined
by the number of iterations. We have taken here 6 =1;
the classical limit is then defined by k ~, T 0,
kT =const. When T=4trP/Q with P, Q integers, 5 com-
mutes with translations in momentum by Q. The classi-
cal periodicity is then Q/2P

In this paper we shall provide numerical evidence for
the validity of a new kind of scaling law for the toral
KR. In doing so, an essential step will be to define an
appropriate measure of localization in a finite sample. '

An interesting application of scaling theory to the KR
has also been discussed in a recent paper, ' in which
scaling was assumed and used to derive a previous esti-
mate for the localization length. ' (In Ref. 13 it was also
assumed that the scaling function is "Ohmic. ")

Even though the toral KR discussed here is a time-
dependent problem, it poses a situation which is typical
of conservative quantum systems with a chaotic classical
limit. There, too, a maximal degree of classical chaos is
assumed to go along with applicability of random matrix
theory (RMT) for modeling the statistics of "chaotic"
eigenfunctions and of the spectrum. Nevertheless, usual-

ly, intermediate situations exhibit deviations from the
ideal RMT case. ' ' It seems reasonable that the role of
localization in determining such deviations, as well as the
scaling properties discussed here, can be carried over to
this more general setup.

We write the time-dependent Hamiltonian of the clas-
sical KR in the form
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H = +k cos8 g 6(t —nT) . (I)
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Notice that (1) defines a dynamical system on a torus as
soon as p is taken mod(2trn/T), n a fixed integer.

The quantized KR is described by the map
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A quantum counterpart for "folding on the torus" is

now provided by Bloch's theorem. If the equation for ei-
genvalues and eigenfunctions of S (the quasienergy ei-
genvalues and eigenfunctions) is written in the momen-
tum representation,
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then, thanks to the periodicity of S, Sp+ g q+ g Sp q,
one can put
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FIG. 1. Three exponentially localized eigenfunctions 1n t u„ t

vs n of the unitary matrix S„[Eq.(5)] for N 600, T 0 544, .
9.19, K kT 5.00.

4Q
with a the Bloch number chosen in the Brillouin zone
( —n/Q, +n/Q) and ui q a Q-dimensional vector. ' For
each Bloch number a the matrix S(a) can be considered
as a quantization of the classical toral KR. In the 0.0 200. a00
language of solid-state physics, it defines the dynamics of n

a particle in a finite one-dimensional lattice of size Q,
and different values of a correspond to different bound-

ary conditions.
Following Ref. 8 we choose a in the band center, i.e.,

we choose periodic boundary conditions. Moreover, one
can restrict the study of S to the invariant subspace of odd states. Then the matrix elements of S are

Snm

I(T/4)(n2+m2) 2N+1
cos

2n(n —rn) I 2n(n +nt) I
2N+1 2N+1

—ik cos[2nl/(2N+1)],

where Q 2N+1 and n, rn =1,2, . . . , N.
The dynamical properties of the classical KR depend

on the parameter K kT. For K » 1 one has fully
developed chaos on the torus. According to generally ac-
cepted views, one should expect the spectral properties of
the quantum toral KR in the semiclassical region to be
well described by RMT. It turned out that fully
developed chaos (K)) I) is not a sufficient condition for
RMT to apply. Indeed, in such a situation one can have
an almost pure Poissonian distribution. Such deviations
from the RMT occur because of missing or incomplete
delocalization of eigenfunctions. Indeed, when N—the
size of the torus or of the sample —is large enough, a
wave packet initially concentrated on some site no
dynamically evolves in the beginning just as it would for
N =~, because it is so narrow that it does not "feel" the
boundary conditions. However, the spreading of the
wave packet will be stopped by interference after some
finite time and "frozen" in a (roughly) exponential
configuration with the probability at site n decaying like
exp( —2I, '

t n —no t ). The localization length is

I, = k /2. In this case the eigenfunctions would be ex-
ponentially localized with a localization length' being
half as large as I, :

I = I,/2 = k /4 . (6)

[We stress here that a condition for the validity of (6) is
that K»1, k »1. The localization length cannot be less
than k, which approximately gives the number of states
coupled by one kick. ] See, for example, Fig. I which

g~/g =f(x), x =N/( (7)

where g is the localization length for an infinite sample.

t
shows three exponentially localized odd eigenfunctions
(only half of each eigenfunction is shown) for the toral
KR with N =600, K 5, and k =9.2.

The above discussion suggests that the effectiveness of
localization should depend on the localization variable
k /N. In solid-state physics localization in finite samples
is closely related to the residual conductance of the sam-

ples themselves. ' ' The assumption that conductance
depends only on the ratio between the size of the sample
and the localization length for the infinite sample is the
core of the scaling theory of localization. There are seri-
ous diSculties in finding a KR equivalent for the solid-
state scaling assumption if the latter is formulated in

terms of conductance. In order to meaningfully define
such physical concepts as conductance, mean free path,
and so on, within the mathematical formalism of Ander-
son localization, an elaborate theoretical apparatus is
needed and great care must be taken to carry this ap-
paratus across the still precarious bridge which connects
the KR with tight-binding models of solid state.

Fortunately enough a formulation of scaling theory
exists that under suitable modifications can be applied to
the KR. According to Ref. 19 the scaling Ansatz is
equivalent to postulating the existence of a function f(x)
such that
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Here g~ is defined by means of the transfer-matrix for-
malism. It is a characteristic length of the exponential
decay of the eigenfunctions in the finite sample of length
N and g~ ( for N ~. In the approach of Ref. 19
the quantity gz is directly related to the residual conduc-
tance via Landauer's formula. In order to apply (7) to
the toral KR, we need to define an equivalent for gjv, but
such a definition cannot be taken verbatim from the
tight-binding model underlying (7). In the first place, a
transfer-matrix formalism for the KR is meaningless
when k -N because then the rank of the transfer matrix
(which is given by the number of sites effectively coupled
by one kick) is comparable to the size of the sample.
Moreover, in truly intermediate situations there is no
practical way to read something like a scale of exponen-
tial decay off actual eigenfunctions, which typically look
like the one displayed in Fig. 2.

We need, therefore, to define a parameter measuring
the localization of eigenfunctions even in cases when lo-
calization is not obviously exponential. Such a parame-
ter was introduced in Ref. 12 via the Shannon entropy of
eigenfunctions. For a normalized eigenfunction assum-

ing a value u„at site n the Shannon entropy is defined by
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FIG. 2. Typical delocalized eigenfunction of the unitary mn-

trix S„[Eq. (5)I for W =600, T =0.146, k =34.1, K
=kT=4.98.
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It is seen that Hjv(u) is essentially the logarithm of the
number of sites significantly populated by the given
eigenfunction u. If all sites were equally populated, then
H~(u) would be lnN.

However, in the case of extreme delocalization, each
eigenstate looks like a typical eigenvector of a random
matrix. The average entropy H of such an eigenvector
can be explicitly computed, because any eigenvector of a
random matrix is a random vector, uniformly distributed

over the surface of an N-dimensional unit sphere. For
large N, the probability distribution for any component
of such a "microcanonical" random vector approaches a
Gaussian distribution. Then one obtains ' H~
=y(N/2+1) —y( —,

' ), where y(z) is the logarithmic
derivative of the gamma function. Therefore, for N&&1,
H~ =ln(aN/2)+ I/N+O(1/N ) with a=0.96.

In other words, should we define the effective number
of states spanned by the eigenfunction as d(u)
=exp[HN(u)], then d(u) in the delocalized case would

be approximately equal to N/2. For this reason we shall
instead define the effective dimension for one eigenfunc-
tion by

d~ (u) =N exp [HJv (u) —H~ ] = (2/a)expHJv (u) . (9)

With this definition, in the opposite case of exponential
localization (when 1 « l « N) we find H~ (u) =1
+O(1/I) and therefore d =d =2!e/a+o(1) = 2.8l, .

A measure of the localization of eigenfunctions similar
to Eq. (9) has been used in different quantum problems
in Refs. 20 and 21, without the normalization factor 2/a.
This factor is dictated by the random nature of chaotic
eigenfunctions and is essential for our present purposes.

Using d~ as a measure of the delocalization of eigen-
functions in the finite sample, we can formulate a scaling
assumption for the KR in the spirit of Eq. (7). Recalling
that for the KR g is proportional to k, we conjecture a

scaling law of the form

d k"—=g, d =(d~).
N N

(10)

Angular brackets in (10) denote the average over all

eigenfunctions of a given S matrix. Indeed, it is known
that the validity of a universal scaling behavior is re-
stricted by macroscopic quantum effects which take the
form of huge fluctuations and need somehow to be
washed out if a single scaling law is to be exposed. Of
course, these fluctuations convey important physical in-

formation that should be investigated, even in the KR
case.

We tested the scaling (10) for our model (5) by nu-

merically computing the eigenfunctions of the matrix (5)
for widely different values of N and k in the ranges
200~ N ~ 860 and 1 ~ k ~ 239. The classical stochas-
ticity parameter was taken in all cases to be K =5, which
corresponds to negligible residual islands of stability.
Even though the fluctuations of d~ of individual eigen-
functions around the averaged values are rather large,
there is excellent evidence of scaling in the mean (Fig.
3). The numerical results show a linear dependence of
d =(d~) for small k /N in accordance with the theoreti-
cal predictions (6) for exponentially localized eigenfunc-
tions. As k /lV ~, the curve approaches the satura-
tion value 1. Its increase is very slow and according to
our data it is consistent with a law P= 1

—0.53(k /N) '~ which actually fits the numerical data
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FIG. 3. Delocalization p d/N vs localization variable k'/N
for N = 400 (squares), lV = 600 (triangles), and N = 800
(stars). Inset: Magnification of the region of small localiza-
tion variable. The dashed lines are calculated for exponentially
localized eigenstates using the theoretical expression for d
The dotted line is the dependence p=1 —0.53(k '/N)

for k /N ~ l.
Our numerical results demonstrate that localization

eN'ects in the toral KR exhibit a scaling behavior which
is a natural counterpart for the scaling theory of one-
dimensional Anderson localization. Of course, this scal-
ing law calls for further investigation. For example, it is

known that the simple estimate (6) fails when the

period T & 1, for in that case I, depends not only on k
but also on T. Since (6) determines the scaling curve for
k /N « I, a similar breakdown of the scaling behavior is

expected in the essentially quantum region T & 1. Nev-

ertheless, the scaling property should be expected to be
still valid in the proper scaling variable ( /N. We there-
fore expect the scaling to be restored on changing vari-
ables from k /N to 2D/N, with D the quantum diffusion
coe%cient measuring the initial rate of spreading of a
wave packet; indeed, the theoretical argument leading to
(6) entails the proportionality of D and g

Though preliminary, our results yield nevertheless re-
markable indications. A first one is that, since deviations
from RMT statistics in the region of full classical chaos
are just due to localization, these deviations must exhibit
a scaling behavior themselves. For example, it has been
shown' that the degree of repulsion of quasienergy lev-

els is directly related to the above defined spectral pa-
rameter d/N; therefore, the degree of repulsion must

display the same scaling as that parameter, and this is
indeed confirmed by some preliminary numerical results

of ours.
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