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A simple derivation of the ideals in the Temperley-Lieb algebras is presented together with a con-
venient basis. Using this basis it is shown how to derive the eigenvalue equations for operators defined on

the algebra and a relation to the Bethe-Ansatz equations is noticed. The irreducible content of the
spin- —,

' XLZ model is also discussed.

PACS numbers: 05.50.+q, 02.20.+b

eP=Jqe;, q~O, (la)

(lb)

(1c)

The first detailed account of their mathematical struc-
ture and its dependence on the value of the parameter q
was given by Jones.

In a typical physical application, the physical system
will be defined by an operator O(AJv) which we wish to
diagonalize and a particular representation of A~ (we
assume free boundary conditions). Baxter had noted

The Temperley-Lieb (TL) algebras were discovered

by Temperley and Lieb' who used them to relate the
spectrum of the six-vertex model to that of the Potts
models (the latter include the Ising model). Their
relevance to 2D integrable statistical-mechanics models
was further clarified by Baxter. He showed how they
arise from solutions to the integrability conditions (the
Young-Baxter equations). Nowadays they are also of in-

terest due to the fact that any representation of them is

automatically a representation of a corresponding braid

group. Braid groups may have yet a broader range of
physical applications. The TL algebra Az is an associa-
tive algebra (i.e., equipped with an involution operation
later denoted by a dagger) over the complex numbers

that is generated by the unit element 1 and the letters
e i, . . . , e~ satisfying

that the partition function can, in principle, be computed

purely algebraically just by using (I). Here we extend
this idea to any operator O(Atv) and turn it into a prac-
tical program, at least for several cases of interest. Our
basic result is a useful basis for the primitive left ideals
of Ajv. Once it is established which ones are realized in

the particular representation defining the model, we can
derive the eigenvalue equations separately on each, and

thus break up the problem to more manageable pieces.
The paper is organized as follows: We begin by using

elementary means to find the primitive left ideals and

construct the above-mentioned basis. Then we show how

it can be used to obtain the eigenvalue equations. We
end up with a discussion of the irreducible content of the
XXZ model.

Primitive left ideals of A~.—We recall some basic
definitions. A primitive left ideal is a collection of ele-
ments I (Ajv) satisfying a. i E I (Ajv) & a E A~ and
i E I (A~) which contains no such smaller subcollection.
There is a natural relation between primitive left ideals
and irreducible representations. Next, we call any
product of letters a word (I is an empty word). Follow-

ing Jones, a word is called reduced if it cannot be made

any shorter using (1). All reduced words which are
equal under (lc) will be considered equivalent. Any
word is proportional to a reduced word, e.g. , e~e3e2e~e3

e ~e3e2e3e~ e ~eqe ~
=e ~e ~e3 =Jq e3e~ =Jqe ~e3, and

therefore the set of nonequivalent reduced ~ords spans
the algebra. Their number Ntt (the empty word includ-
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ed) is given by the Catalan number given by

1

(N+2)
2(N + 1)

N+1 1~m~& . &mq+~~N, m~2i —l. (4)

We will start by assuming that they are linearly indepen-
dent and therefore can provide a basis (this is termed the
generic case). In this case dim(AJv) =NR

To get the ideals we introduce the following new con-
cept. We say that a jump occurs in the reduced word w

whenever an index on two neighboring letters diAers by
more than 1. We define N(w) to be the number of such
occurrences in a given word w (not necessarily reduced),
and N(-w) to be the minimal value of N(w) in the
equivalence class of the reduced form of w [N(e;)—=0
and N(1)—= —1]. The usefulness of N(-w) lies in the
fact that it cannot decrease upon multiplication,

N( —w(w2) ~ max[N(-w)), N(-w2)], (2)

and in the fact that it takes integer values in the limited
range from —I to [(N —I)/2]. Define Iq to contain all
words w such that N(-w) ~ k. Then the It, 's form a
family of nested two-sided ideals (Iqr II, ~), I-~ being
the whole of A~.

Consider the following set of reduced words given by
St, =e ~e3— erat, + ~ (S—

~

—= I ). St, has k jumps and any
word with k jumps is proportional to a (nonreduced)
words of the form wLSkwp, with wLSk and Skwg re-
duced. Out of the Il, 's, only the last one with k=[(N
—1)/2] is primitive. Indeed,

SkwSk ~ Sk, + w E 82k+2.

So only S~t/v —~~/2~ satisfies the necessary and sufficient
condition to generate a primitive ideal in Ajv. Can one
construct primitive ideals in A~ based on the other Sk s?
Sk is a barrier for e], . . . , e2k+2. If one can find

Zt, (e)/+3 . . . , etv ) satisfying e; Zt, =0 V i ~ 2k+ 3,
then the collection of elements of the form (wSt, )ZP is a
primitive left ideal where the reduced words wSk have
exactly k jumps. For many practical purposes, once we
know Zk exists we can forget about it and simply define
w'(wSt) to be zero if the result contains more than k
jumps.

When e; e; one can show that a nontrivial Zk must
be (up to an overall factor) of the form Zl, = I —Et, ,

where Ek is a linear combination of nonempty reduced
words, acting as a unique two-sided identity on the
letters e2k+3, . . . , e/v. One can obtain an inductive for-
mula for Ek, depending on the number of letters
N —(2k+2) and q, which tells the following: For q ~ 4,
Ek exists for all allowed k's for all N. Hence each A~
has a full set of [(N + 3)/2] primitive ideals. In this case
the reduced words are indeed linearly independent. We
can now give the basis announced earlier. Defining C„,
—=e„,e„, ~

. e„, (nq~ n~) then the basis vectors are

The inequality imposed on the m s guarantees that
the 'C~'s are reduced. Their number for a given k is

N N

k+& k —l

[where (;~) =0 for i & 0], and this gives the dimension of
the generic Ik.

For q 4cos (tr/p), where p is an integer (for q &4
these are the only q values for which e; =e; is consistent;
see Jones ), a nontrivial Zt, exists only for k)max[ —2, [(N —p)/2]]. As a result the number of
primitive ideals cannot grow (with N) beyond [(p
+I)/2]. Moreover, Z ~~ 0; that is, linear relations
appear between reduced words. The 'C~'s still span the
surviving ideals but as explained, they are linearly depen-
dent. We will return to this point shortly.

The reduced k-jump words in If(A&) divide into
words which contain e~ and words which do not. The
latter are words on A„—]. The former must have the e~
letter on the rightmost decreasing chain and therefore
can be factored as 'C, ,C2k+ ~ where the left factor
is a (k —I)-jump word on Az-~. We can summarize
this by the following symbolic formula:

If(AN) If(Atv ])+If )—(Atv-))C—2k+} . (5)

Suppose that the zero-jump ideal exists. Then the eigen-
value equation for it reads

JV IV

Hga 'C =Ega 'C
m ]

(7)

Equation (5), which shows how to construct a basis
for the ideals of A~ out of the basis for the ideals of
A~ —~, is equivalent in its contents to a Bratteli diagram
(one has to attach a primitive left ideal to each node).
For e; e;, q ~ 4, it is identical with the basis given in

(4). For q 4cos (tr/p), Eq. (5) tells us how to con-
struct a linearly independent basis of reduced words for
the surviving ideals. One just has to ignore any Ik ] for
which Zk —

~ does not exist.
Eigenualue equations. —The eigenvectors of O(AN)

will be represented in the vector space Ajv in each
k-jump sector by linear combinations of the type
g~aM 'CM. Since the most general O(A~) is a linear
combination of reduced words, it is enough to know the
action of single letters upon the basis. This can be evalu-
ated explicitly using (I) and will be given for general k
elsewhere. Here we give an illustrative example. As
O(Ajv) we take the Hamiltonian of a Potts or XXZ
chain at criticality with free boundary conditions,

/V

H=ge, .
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a;-~+(Jq E)a;—+a;+~ =0, 1 ~i «N, (9)

where the boundary conditions are encoded in ao
ajv+~ 0. Equation (9) is identical in form to the

(n-1)-sector Bethe-Ansatz equation of the XXZ mod-
el. The general k-jump-sector equation is similar (but
not identical) to the (k+1)-sector XXZ equation. The
reason for this will become clear when we discuss the
decomposition of the XLZ representation.

How can we formulate the eigenvalue problem when

the reduced words are not linearly independent? As ex-
plained, we can isolate via Eq. (5) a linearly independent
set, but then, in addition to (1), we will also need the
condition Z ~~ =0 (which hides a fairly complicated
relation whose complexity grows rapidly with p) in order
to calculate the action of e; upon this basis. Instead, we

propose to keep using CM together with (I ), ignoring
the extra relation. This will introduce many false eigen-
vectors which are in fact zero vectors expressed as non-
trivial linear combinations of 'C~'s. However, because
of the rather trivial fact that (anything) 0 =0, they have
to form invariant subspaces within the surviving k-jump
sector. We further claim that these invariant subspaces
will be l-jurnp spaces with I & k. We are therefore look-

ing for a vector V satisfying

e;V 0, Vi ~ 2l+3,
(10)

V pa~ 'C/ 3 . , zl+1, m~+&, . . . , mg„.
IM

If nontrivial a~'s solving (10) exist, one can generate
an l-jump subspace from V by multiplying it from left
with 'C, „,. Hence, out of the 0 eigenvectors so
obtained all those of the form +~a~'C, „,Vhave
to be rejected for all pairs (I, V) which solve (10). Omit-
ting here the details, it turns out that a nontrivial solu-
tion to (10), if it exists, is unique for a specific I value.
The allowed l's are determined by the simple condition

I=N —pm —k, m integer~ 1, —
1 ~ I (k. (11)

To illustrate the above points we take as an example
N =3. The generic algebra has three sectors with
k= —1,0, 1 whose dimensions are respectively 1,3,2. In
the Ising case (q =2 p=4), the —I sector does not
exist and the 0- and 1-jump sectors are each of dimen-
sion 2. So if the generic basis is used for the zero-jump
Ising sector, one spurious vector is introduced. Indeed,
Eq. (11) gives I = —

1 for N=s, p=4, k=0, and m= 1.
The —1-jump subspace is one dimensional (irrespective

In order to evaluate the left-hand side we need the fol-

lowing result:

e, 'C =(b; -)+F6;,m+8;, m+i) 'C;.

Inserting (8) into (7), performing the sum over m on the
left-hand side, and collecting coefficients of each 'C,
gives

Content of the spin —, XXZ -model. —The following
discussion will serve to show how the I(, 's are realized in

a concrete representation, to learn what can happen
when e;&e;, and to clarify some aspects of the Bethe-
Ansatz solution. In the LXZ representation of the TL
algebra, the e, 's are represented by the following ma-
trices:

Vt(a)= exp(iacrf)P—texp(iacrt'), Jq =2cos(2a), (14a)

Pi = 4(o( rrt+ —
i + &t rrt+ i ) + z (I &t'&t'+ i ) (14b)

where a( IS SIScr'SIS . SI, I is a 2x2 unit
matrix, and rr'(i =z, +, —) is a 2X2 Pauli matrix stand-
ing in the Ith position of the (N + 1)-fold tensor product.

Since Pt P~ we have Vt (a) = Vt(a) only if a is pure
imaginary, which corresponds to q ~ 4. For real a, the
above provides a nonunitary representation with q &4.
The V('s act on a chain of N+1 spins, where each spin
can be either up (

~ f &) or down (
~ J &). The nontrivial

part of the action is on the I, l + 1 subspace:

v
I f f &

= vi I l l & =0;
(I S)

V~
~ f j& =exp(2ia) Vt [ J f & =exp(2ia) [ f J &+

~ J f &.

We see that the V~'s conserve the number of up (and
down) spins, so we can work in a subspace of fixed
n ~ [N/2] up spins. Next, we ask which jump sectors
can be accommodated in such a subspace. If I(, is con-

of N) This spurious vector is annihilated by all the e s,
so from (6) it is clear that it has a zero eigenvalue under
H. In general, if we have the solutions of the generic ei-
genvalue equations up to k, we can also construct the k-
sector spectrum for the special q values. In relation to
this, using the solutions of (11), it should be possible to
obtain the true dimension of a surviving I(„ for general
W, k,p, by subtracting spurious vectors from the generic
I(, . One should pay attention to the fact that the zero
vectors comprising the l-jump subspace of the k sector
may themselves be linearly dependent. This can be de-
cided by examining the subspaces of the l-jump subspace
itself [in (11) one looks for I 's which solve the equa-
tion with k =I on the right-hand side]. If an I-jump sub-

space has yet such a smaller l -jump space which does
not show in the original k space, then the vectors in the l
subspace are linearly dependent. One has to iterate this
procedure until no new invariant subspaces are found. If
one defines inductively

[("]-N —m —[I" "]
where [I ' ] is the family of solutions obtained in the ith

step, with any l ' value already obtained in a previous
step discarded and [I ] —k, then we have

dimlt'[at q =4cos (tr/p)] g( —I )'gdiml&& i(generic) .
I ( (t)

(i 3)
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tained, we must find a spin state which is not annihilated

by Sq. From (15) and the definition of St it is clear that
the spins at positions i,i +1 must be relatively flipped for
i 1,3, . . . , 2k+1, in order to get a nonzero result. It
follows that in an n-up-spin subspace, the highest jump
sector we can find is I„

We return to our previous example of the A3 algebra
in order to explain how the construction proceeds and

later state the general result. We have in total four
spins, and we take the subspace n 1. We can find a
unique state which is nonzero only under the action of
vi,

1&0= I t J l l&. (16)

is annihilated by all VI's.
The result for the general case is as follows: In an n-

up-spin subspace, one can construct [explicit generaliza-
tions of (16) and (17) will be given elsewherel represen-
tations for all generic I 's with k = —1,0, . . . , n —1, one

copy for each. For asap'tr/p (p', p integers) the n-up-spin

subspace breaks into a direct sum of these I~'s. For
a p'tr/p the construction of the It, 's remains the same
but linear dependences can appear. Returning to the ex-

ample one finds for tt =tr/8 (the Ising value)

I )-1 ~ exp
fir

4
Vi — 1+exp V2V)

l 3K—exp V3V2V| 'I )0,
4

(18)

i.e., I-~(33)CIO(A3) for this value of a. This also fol-

lows from (11). However, the diA'erence with the previ-

ous discussion is that
I

& 1 is not a zero vector. It ap-
pears as a "true" subspace of 10(A3). This is possible

Then 10 (A 3) is realized by the states V~ I )n, V2V~ I )p,

V3 V2V) I )Q. Using (15) it is easy to see that these states
are nonzero and linearly independent. Because of the
uniqueness of I )n there can be only one copy of a zero-

jump sector, so we can only look now for a —1-jump
sector. This means that we are looking for a state which

is annihilated by all the VI's. We can get such a state by
"a antisymmetrization" of I &o, namely,

I ) - i -11l l l) —exp(2ia) I l t l J)

+exp(4ia) I J J t J &
—exp(6ia) I l l l t)

due to the fact that the representation is not unitary. In
this case, the 4D 1-up-spin subspace does not decompose.
It has a 3D invariant subspace containing further a one-
dimensional invariant subspace, but the complementary
subspaces are not invariant. It is amusing to note that
for the purpose of identifying the spectrum of the unitary
generalized [q=4cos (tt/p)] Potts models within the
spectrum of the nonunitary XXZ model with the same
value of q, the discussion following Eq. (11) carries over.
The solutions we discard may come from true eigenvec-
tors of the XXZ Hamiltonian, but they are not "true"
k-jump states and therefore cannot contribute to the
Potts spectrum. It is plausible that the Bethe-Ansatz
solution of Ref. 6 "sees" in each n-up-spin subspace just
the (n —I)-jump sector it contains. I hope to elaborate
on this as well as on other topics elsewhere.
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It can be interesting, at least from an algebraic point of
view, to look at the structure of the algebra when both e, and
e,
' are included.

For the explicit form of the matrices see Martin, Ref. 3.
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