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Comment on "Exact Solution for DiN'usion in a
Random Potential"

Zeldovich et aI. ' have argued that, for diff'usion on a
lattice with random sources and sinks, the concentration
at the origin, P(0), scales as lnP(0) —X t . At each
lattice site there is a source of strength kV with V a
Gaussian random variable with mean zero and variance
unity. In the continuum limit, Tao has shown that
lnP(0)-X t /D, where D is the diffusion coefficient.
Tao's numerical simulations yield a slower growth law

which is lnP(0) ( t t . The purpose of this Comment is

to show that all these results are explained by a Flory
theory.

Diff'usion with random sources and sinks is equivalent
to a polymer in a random potential, cf. Tao and Ed-
wards and Muthukumar, with lnP(0) equal to the free
energy of a polymer constrained to return to the origin.
Solutions to the polymer problem ' yield the same re-
sults as Refs. 1 and 2.

The growth law of Ref. 1, P(0)-exp(X t /2), is due
to the presence of extremely rare sources of strength
V -Xt that dominate behavior at time t. The probability
that V Xt occurs at a site is roughly exp( —X t /2).
For Tao s simulation this probability is 10 . Thus the
asymptotic behavior cannot be seen in numerical simula-
tion.

We have constructed a Flory theory for the equivalent
polymer problem which takes into account the number of
realizations, M. For a random walk of N ( 2Dt) steps
that visits s distinct sites in the presence of a Gaussian
random potential the free energy is

F(t,s) tr Dt/s +s /4Dt —tr —I~(t,s) . (1)
The first three terms describe a polymer on a l D lattice
while IM(t, s) is an e[fective potential that arises from
truncating the probability density for V in a way which
reflects the fact that there are M realizations in the en-
semble, '
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FIG. 1. The concentration at the origin vs time plotted in

the form JD [lnP(0)]/k t t vs t The c.rosses are the numeri-

cal simulation using the same parameters as Tao (M 1000,
D 0.1, k 0.01). The upper smooth curve is the result for an

infinite number of realizations. The lower smooth curve is the
Flory theory for the parameters of the simulation.

cal results are in excellent agreement with Tao's. The
lower solid curve in Fig. 1 is found from Eqs. (1) and (2)
with V* 3 and compares well with the simulation.

The disagreement between the numerical work and the
analytic result is due to finite-realization eff'ects. The
Flory theory provides a useful framework for obtaining
exact asymptotic results and understanding simulations
and experiments.
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Here V is the expected largest value in a set of M reali-
zations of V and is estimated from Merf(V*/J2) = l.
The partition function for the polymer is found from s*
that minimizes F(t,s) at fixed t; P(0)

exp[ F(t,s )I/ s i—s equivalent to the quantity stud-
ied by Tao. For an infinite number of realizations,
I (t,s) —t /s in agreement with Refs. 4. As t becomes
large, s decreases as 1/t leading to Tao's result, lnP(0)—t . If there is a lattice cutofI'; s* decreases to it after
which lnP(0) —t in agreement with Zeldovich et al.
For a finite number of realizations, I~(t,s) —t/ Js as t
becomes large and s* becomes independent of t, lnP(0)

E.

We have repeated Tao's numerical simulation. We
show lnP(0) vs t t in Fig. 1 with crosses. Our numeri-
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