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Exact Fractal Area of Two-Dimensional Vesicles
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In a Letter ' Leibler, Singh, and Fisher studied the
thermodynamic behavior of two-dimensional (2D) vesi-
cles (see also Ref. 2). The latter are described by a
bead-and-tether model of a closed self-avoiding mem-
brane, which also embodies a pressure diA'erence hp

p;„t—p,„tbetween the interior and the exterior. The
number of beads is N. In a stress ensemble, hp is fixed
and the area of a vesicle, A, fluctuates subject to a
Boltzmann weight exp(hpA/kaT). In the /flaccid case
where Ap 0, the model reduces to closed self-avoiding
walks (SAW). By Monte Carlo methods they measured
the mean square radius of gyration (Ro) =RON " as
N , finding v 0.755 ~0.018, in agreement with the
exact v 4 . Now, does this fractal fill out its interior
so that (A)/RG 0, or does it have an area proportional
to the square of its linear dimension so that if &A) =Au
XN ", one has v~ v? The above authors found' v~/v

1.007 ~0.013, thus conjecturing the equality. " In this
Comment we show that the conjecture v~ v 4 is true
and contained in results recently obtained for the 2D
O(n) model.

The latter is defined, e.g. , on a hexagonal lattice, by
the partition function Zot„&-ggK n, where the sum
extends over all configurations g of nonintersecting
loops, with a total number of bonds N and of loops L.
For n 0, 8Zot„&/8n ~„-0describes the partition func-
tion of a single loop, with fluctuating length. The critical
point is K, [2+(2—n)'t ] 't for n E [—2, 2], where
the loops become infinite and fractal. For E&EC, one
has a new dense critical phase, where the infinite loops
Pll the plane. Let us call D the fractal dimension of the
connected domains inside the loops and DH that of the
loops (hulls). Then the linear size of a large N-bond

loop scales as (R )-N '", where vH ——1/DH (to be dis-
tinguished for nWO from the correlation-length exponent
v), and the area (A) of the domains scales as (A)-(R)
—N "". Hence (A)-N ""

gives v~= ~ DvH. For poly-
mers vH v, and the above conjecture vz v actually
corresponds to the interior fractal dimension D=2. In
Ref. 5, D was calculated by a Coulomb-gas method as a
function of n e [0,2], n = —2cos(zg), as D =1+

& g
+3/8g, where g C [1, —', ] or g E [ —,', 1] for the dilute or
dense phase, respectively. One also has DH 1/vH 1

+1/2g. For a self-avoiding closed walk (n 0, g
dilute, or g —,', dense) we find D =2 in both phases.
D(n) (Fig. I) varies Very little for n 6 [0,2] ranging
from D =2 to 1.875 for n =2 (XY model) and passing in

the lower dense branch through the percolation-cluster
fractal dimension D= 48 =1.8958. . . for n=l, and in

the upper dilute branch through D = 'g'&' = 1.9479. . .

for the n 1 Ising clusters. '

Dense polymer loops also have D =2. Since vH =1/d
= —,', we get (A)-N "-N. The area then scales as
the length. The universality class and topology are then
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FIG. 1. Fractal dimension of the connected domains in the
critical O(n) model (dotted line) or in the dense phase (solid
line). Only for n 0, do we have D 2.

those of spanning trees (ST) with, essentially, each arm
formed of a double chain, the tree being close packed.
In the defecated regime (dp (0) Leibler, Singh, and
Fisher' also observe (A)-N but in the different univer-
sality class of branched polymers (BP) with
v=0.65~0.04 & & . Actually spanning trees are col-
lapsed branched polymers, obtained by attraction be-
tween the arms, an eA'ect which cannot be created by a
pressure deflation. Another route to ST, i.e., dense poly-
mers, would be in a strain ensemble to enclose the vesicle
in a box of crushing area. Whence the series of fixed
points of increasing stability for 2D vesicles, with their
central charges: flaccid (SAW, c -0) deflated
(BP) crushed (ST, c —2). By the c theorem (if
valid for these nonunitary systems), c decreases along
the renormalization flow. Hence the (unknown) central
charge c of BP or animals should satisfy —2 ~ c ~ 0.
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