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Phase Separation in the t-J Model
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It is shown that, for the t-J model, dilute holes in an antiferromagnet are unstable against phase sepa-
ration into a hole-rich and a no-hole phase. %'hen the spin-exchange interaction J exceeds a critical
value J„the hole-rich phase has no electrons. It is proposed that for I slightly less than I, the hole-rich
phase is a low-density superfluid of electron pairs. A brief discussion of phase separation in other related
models is given.

PACS nUmbers: 74.65.+n, 75.10.Jm, 75.25.+z

It has been clear for some time that a detailed under-
standing of the motion of "holes" in an antiferromagnet
is of fundamental importance for the theory of high-

temperature superconductors' —at least for those con-
taining copper oxide planes. The parent compounds such
as La2Cu04, YBa2Cu306, or Nd2Cu04 are antiferro-
magnetic insulators but, when electrons or holes are in-

troduced into the Cu02 planes by doping, the magnetic
order eventually gives way to superconductivity. The
precise manner in which this comes about surely is of im-

portance for the electronic structure and for the nature
of the quasiparticles in the metallic state, whatever the
mechanism of superconductivity.

The simplest model for studying this problem is the t-J
model. It starts from the assumption that the parent
compounds are well represented by the Heisenberg mod-
el with localized electrons of spin- 2 occupying a square
lattice and coupled by an exchange integral J. Doping is
assumed to remove electrons thereby producing a "hole"
or missing spin which is mobile because neighboring
electrons can hop into its place with amplitude t. This is

but one of several models that have been proposed for
the study of correlation effects in high-temperature su-

perconductors. Nevertheless, it is simple and has been
widely studied, so it is certainly worthwhile to establish
its phase diagram as a first step, and then to ask how

more elaborate models may diA'er in their behavior.
The question to be addressed here is whether the holes

have a uniform density (as is usually assumed) or
separate into two phases of different density. The sim-

plest possibility, and the one that turns out to be
relevant, is that all of the holes are in one phase and the
other phase is the undoped antiferromagnet. In that
case, the problem may be reformulated by writing the
energy in the form

E =(1V, —N)eH+Neh .

Here N, is the total number of sites in the system and N
is the number of sites in the hole-rich phase. The energy
per site in the Heisenberg (hole-free) phase is denoted by
eH = —2BJ, where BJ is the energy per bond: The best
estimate of B by extrapolation from finite-size systems

is B 0.584. The energy per site in the hole-rich phase
is denoted by eh, which is a function of x=Nh/N, —where

NI, is the number of holes. The system will separate into
two phases if E has a minimum as a function of N at
N N & N, . If E is rearranged into the form

E N, eH+Nhe(x),

where e(x)—= [—eH+et, (x)]/x, this will occur if e(x)
has a minimum at x x —=Nh/N . Thus phase separa-
tion is equivalent to the hole's condensing into a self-
bound system of concentration x . When x is close to
1, it may be simpler physically to think of the hole-rich
phase as a low density of particles, but we shall continue
to express the problem mathematically as a minimization
of e(x).

This discussion is obviously relevant, since either su-

perconductivity or condensation into a liquid or both
may be consequences of an attractive interaction.
Indeed, liquid He, a fermion superfluid, is self-bound in

precisely the same sense as we are considering here. It
may be objected that, unlike He atoms, the holes in

high-T, superconductors are charged, and that Coulomb
interactions will prevent condensation. Nevertheless, on
the theoretical level, our results are significant because
the t-J model as usually studied does not contain
Coulomb interactions, and it is desirable to know what
its phase diagram really is. Moreover, in the materials
themselves, the holes are often donated by oxygen atoms
which are quite mobile at temperatures below the conso-
lute temperature of the holes, which we expect to be of
order J/ktt. Hence the "background" 0 atoms may
also phase separate and compensate for any local charge
imbalance. Precisely such phase separation occurs in

oxygen-doped La2Cu04. Evidently a complete picture
would include the energies of the oxygen defects, but it is
clear that the holes themselves may be a force for phase
separation and that charge imbalance will not necessarily
prevent it.

Another consideration is that liquid He is a three-
dimensional system, whereas holes in the Cu02 planes
are two dimensional. The distinction may be quite
significant. Consider first the case of a purely attractive
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interaction. It is well known that the system will col-
lapse to arbitrarily high density when the dimension
d & 2. This may be shown by means of a variational ar-
gurnent, using a free Fermi-gas trial wave function. The
attractive potential energy is proportional to the density
n, whereas the kinetic energy varies as n ". Thus, for
large n, the potential energy dominates when d & 2: The
Fermi pressure is incapable of sustaining the system
against collapse. In practice, stabilization is provided by
a short-range repulsion as, for example, in liquid He or
nuclear matter. But it is clear that in three dimensions
the attractive part of the interaction does not have to be
strong in order to produce a self-bound many-body sys-
tem. In particular, it can certainly be much too weak to
form a two-body bound state.

The situation is very diff'erent in two dimensions where
an arbitrarily weak purely attractive potential will bind a
pair, but collapse is marginal and the formation of a
many-body bound state is delicate. The instability is at
long distances. A priori, it seems possible that a two-
dimensional system may be able to form a low-density
liquid of pairs, which should be a superfluid at low tem-
peratures. To investigate this possibility for a potential
with a short-range repulsion and a longer-range attrac-
tion of strength V, it would be necessary to determine the
critical values of V for the formation of bound two-,
three-, or four-particles bound states and for condensa-
tion into a liquid.

With this background, we now turn to the t-J model.
The Hamiltonian is given by

Jg (S; S~ ——,
'

n;nj ) —t g [c;,c, , +H.c.), (3)

where c;, creates an electron of spin s on site i, and n;, S;
are the electron number and spin operators, respectively.
The Hamiltonian is supplemented by the constraint that
there be no doubly occupied sites. Thus, there is an at-
tractive potential ( —J) between electrons in singlet
states on neighboring sites.

For perspective, it is interesting to consider generaliza-
tions of the model in which the spin coupling is aniso-
tropic (Heisenberg-Ising model) and possibly ferromag-
netic, and also to add an interaction V between electrons
on neighboring sites. We have made a detailed study of
the phase diagrams of the extended model in the small-t
limit and have found that phase separation is the rule
rather than the exception. For the t-J model itself, we
start out by considering the large-J and small-J limits.

When J is large, the hole-rich phase consists of all
holes, x 1. This may be understood in the following
way. The energy to remove an electron from the purely
antiferromagnetic phase (x 0) is 2BJ=1.168J and the
gain in kinetic energy is —4t. Thus the fully phase-
separated state is unstable to the transfer of single elec-
trons when J ~ J~ 3.42t. However, it may be shown
that two electrons form a bound state when J & 2t. (The
interaction is separable and the Schrodinger equation

e (x) 2BJ/x —4t + 2n tx . (s)

Minimizing with respect to x gives x =(BJ/trt ) 't and

e(x ) = —4t+4(BJtrt)'t .

This is to be compared with the energy per hole in a uni-

form phase which, in the low-density limit, is the same as
that of a single hole in an antiferromagnet. If the hole
does not create a ferromagnetic bubble around itself, its
energy is ' —(12) 't t+f(J), where f(J) & 0. If it does
create a ferromagnetic bubble, it is easy to show that the
energy is given by Eq. (6) with the JtJ term multiplied

may be solved analytically for zero binding energy. ) So,
as J is decreased, there will be an instability to pairs be-
fore single particles; we have shown that it occurs at
J2 3.828t. It is also necessary to consider the possibili-

ty of three- or four-body bound states. We have not
done this for an infinite system but, for a 4x4 lattice, we
find that J must be considerably larger than J2 in order
to form three- or four-body bound states and that as J
decreases, the first instability is to pairs at J=3.53t. It
seems likely that the first instability is to pairs in the
infinite system also. If so, the hole-rich phase may be re-
garded as a dilute gas of pairs of electrons when J is

slightly less than J2. Since the pairs are bosons, they
probably form a superfluid at low temperatures. As J is
decreased still further, the density of pairs may build up
sufficiently for the system to become a BCS supercon-
ductor but there should be a crossover to a new state at
least by J 2t (where the pairs unbind) since a neces-
sary and sufficient condition for BCS pairing in a dilute
gas is that there is a two-body bound state. But, for
that value of J/t, the equilibrium density of electrons in

the hole-rich phase is already quite high, and results for
a low-density gas may no longer be relevant. In a BCS
picture, a crossover to pairing in higher angular momen-
tum states would occur as the density increases. We
stress that we have not proved that x decreases continu-
ously from 1 at large J; the system might, in principle,
jump to a moderately high density of electrons, for which

the preceding discussion would be inappropriate.
In the other limit, J« t, we follow an argument simi-

lar to that of Visscher and of IoA'e and Larkin and
show that a very low density of holes is unstable to phase
separation with the hole-rich phase ferromagnetic. By
the variation principle, this argument is sufficient to
demonstrate phase separation, whatever the character of
the true ground state of the hole-rich phase. In a fer-
romagnetic region, the holes behave like spinless fer-
mions with an energy spectrum

2t [cosk„+cosky] .

For a low density of holes, the cosines may be expanded
to second order in k and k~ and the total energy of the
separated phase may be written in the form of Eq. (2)
with
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by an extra factor of 2Jx. In either case, the energy of
the phase-separated state is lower when J is suSciently
small.

The physical reason for phase separation in the large-J
limit is that the gain in exchange energy by maximizing
the number of antiferromagnetic bonds outweighs the
cost in kinetic energy. In the small-J limit, phase sepa-
ration occurs because the motion of a hole in an antifer-
romagnet is frustrated and it is better to put all of the
holes into a region in which they have a lo~er kinetic en-
ergy. In one dimension, the same kind of argument goes
through for large J but not for small J, because the ki-
netic energy is not frustrated.

Since there is phase separation for J((t and J&) t, it is
reasonable to expect that the same qualitative behavior
should be found for all values of J/t and that x in-
creases as J/t increases. Physically, this is to be expect-
ed because if the background remains antiferromagneti-
cally correlated there is an attractive interaction between
holes on opposite sublattices. We have tested this idea
by carrying out exact numerical diagonalization of the
Hamiltonian on a 4&4 lattice" and interpreting the en-

ergy of Ni, holes as the energy of a hole concentration
x Nh/16, which is reasonable when the number of elec-
trons is not too small. For example, when x 0, the en-

ergy per site diA'ers from that of the infinite system by
about 5%. Figure 1 shows e(Nh/16) for a 4X4 lattice as
a function of Nt„ for J/t 0.1, 0.4, and 1.0. The minima
at x x~(J) indicate phase separation for x (x . Fig-
ure 2 gives x as a function of J/t The ind.ividual data
points are for a 4&4 lattice and the curve illustrates the
expected behavior for an infinite system, matching to

x -(BJ/trt)'/ at small J/t and going to x =1 whenJ) 3.828t. The points at J/t =2.5, 3.0, and 3.5 all cor-
respond to two-particle bound states, and surely are not
representative of a finite concentration of holes. Howev-
er, they do suggest that the hole-rich phase of an infinite
system consists of a gas of pairs in this region.

An important implication of these results is that the
transition from the ordered antiferromagnet to the doped
state is first order. It is therefore not clear that the
doped system can ever be regarded as a weakly disor-
dered antiferromagnet.

Phase separation will occur in other proposed models
of the copper oxide planes of high-temperature supercon-
ductors. The original arguments of Visscher and of
Ioffe and Larkin were applied to the Hubbard model for
large U/t. It can be seen that the discussion presented
above relies on energies of the Heisenberg model, the
ferromagnetic state, and the U ~ limit, for all of
which the t-J model and the Hubbard model are
equivalent. To go further, it is necessary to resort nu-
merical calculations since the small-U/t limit cannot be
analyzed in a simple way. Riera and Young ' studied
the large-U form of the Hubbard model (t-J model plus
pair hopping) on a 4 & 4 lattice and showed that
Ett2 —=2[e( —,', ) —e( —,', )] is negative for all relevant
values of U/t but that Ett4 ——4fe( —,', ) —e( ~g )] is nega-
tive only for U» St. These results are consistent with
phase separation since x 0 as U/t ee and, if e(x)
is monotonic increasing for x )x, Eg4 must be positive
when x &,'& . It is evident that numerical calculations
for much larger systems are required to study e(x) for
small values of x, but the possibility of phase separation
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FIG. 1. N&e(x) is the energy to add Nz holes. e(x) is
shown as a function of Nz for J/t 0. 1 (squares), 0.4 (dia-
monds), and 1.0 (circles). Note that the states with odd or
even Nl, have different spin and that the oscillations in the en-

ergy are a finite-size effect.

FIG. 2. x Nq/N, the point at which e(x) has minimum,
is shown as a function of J/t The data points are values fo. r a
4X4 lattice and the curve illustrates the expected behavior for
an infinite system (see the text).
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should be investigated more thoroughly wherever it is
found that two holes are bound. Recently, Dagatto et
al. ' have shown that Eq2 &0 for the Hubbard model on
a 4 x 4 lattice with U/t =4.

Phase separation may also occur in three-band models
of the copper oxide planes, ' ' but the physical reasons
may depend on the particular range of parameters as-
sumed. In some cases, the arguments are similar to
those for the t-J model. But if the Coulomb interaction
V between holes on neighboring sites is too large, that
alone is suScient to destabilize the system. ' Materials
aspects of phase separation have been discussed by
Gor'kov and Sokol. '
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model when N
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