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A fluid confined between two parallel walls that exert different (competitive) surface fields may exhib-
it phase equilibria strikingly different from those found for equal fields. Macroscopic arguments and an
explicit mean-field analysis predict that if the fields are such that the fluid wets one wall and dries the
other (above a certain critical wetting transition temperature 7. ) coexistence of two phases can only
occur, for finite wall separation L, when T < T, ., where the critical temperature T, lies below T.. A

By

scaling Ansatz suggests T\ — T ~L !
wetting layer.

PACS numbers: 68.45.Gd, 64.60.Fr, 68.35.Rh

When a fluid, or an Ising magnet, is confined between
parallel plates or walls, its phase behavior can be sig-
nificantly different from that in bulk. The finite thick-
ness, L, of the film and the presence of specific wall-fluid
interactions modifies the bulk phase diagram. In partic-
ular, the location and the nature of critical points are
different from those of the bulk fluid. For a film that is
of infinite extent in d —1 dimensions, parallel to the
walls, true criticality can occur provided d —1= the
lower critical dimension of the corresponding bulk sys-
tem. The critical temperature 7, ; will be removed from
that in bulk, 7 , and criticality for finite L will lie in
the universality class of the bulk d —1 system. Previous
theoretical treatments!? have usually focused on fluids
confined between identical walls, which are assumed to
exert a surface field 2| on both surface layers. Finite-
size scaling arguments, due to Fisher and Nakanishi, !
predict a shift

ATc(L;h])ETc'co - TC,L
=T o X (h L)L Y, 1)

where v is the correlation-length exponent of the bulk d-
dimensional fluid, &y~ | T..o— 7| ", and A, is the sur-
face (gap) exponent. X.(w) is a scaling function. Con-
tinuum Landau theory confirms (1), yielding AT, ~L ~?
for L — oo; recall v=1 in mean-field theory. Moreover,
the same theory indicates? that the extent of the shift
is rather insensitive to h; since AT.(L;=)/AT.(L;0)
== 2.60 for all thicknesses L. This result implies that
critical-point shifts are not influenced strongly by wet-
ting behavior; whether or not one phase wets the walls
completely for L = oo does not appear to be of crucial im-
portance®? in determining the shift of the bulk critical
point* for finite L.

Here we consider a fluid confined by walls that are not
identical, h;>h,, and enquire how the phase equilibria is
altered from that in the symmetric case. By choosing to
make the surface fields competitive [h, favors liquid
(spin up) while &, favors gas (spin down)] we can ensure
that above a certain critical wetting transition® tempera-

, where B; is the exponent that describes the growth of the

ture 7, (< T, ) wall 1 will be completely wet and wall
2 will be completely dry at bulk coexistence for L =oo,
On the basis of a mean-field calculation for a model of
such a system we show that for finite L only one phase
can exist for 7= T, ,, where T, lies below T,. Coex-
istence of two confined phases does occur for 7 <7,
and the location of the appropriate critical point 7 ; is
accounted for by a scaling Ansarz which is of a very
different character from (1). The wetting behavior in-
duced by asymmetric wall fields has a profound effect on
all aspects of the phase equilibria of the confined fluid.

A first indication that asymmetric confinement can
lead to new features comes from consideration of capil-
lary condensation,? i.e., the shift of the bulk first-order
transition. For a system with Ising symmetry, bulk coex-
istence, between states + and — with magnetizations
my4 and m—- (= —m,), occurs at bulk field #=0. In
the limit L — oo macroscopic arguments’® predict coex-
istence at a shifted bulk field

—heo=20+—cos@/Lmy—m_), )

for the symmetric film h,=h,. The contact angle 6 is
given by Young’s equation o,- =0, ++0+-cosb,
where the interfacial tensions refer to 2 =0; o+ — is the
tension of the (free) + — interface and w refers to a sin-
gle, isolated wall. If the wall favors + phase, cosé@> 0.
When h, is sufficiently large, so that 6 =0, wetting layers
develop at each wall and (2) should be modified by re-
placing L by L — 2/, where [ is the thickness of a wetting
layer.> Explicit calculations®>* show that the effects of
wetting layers are of quantitative rather than qualitative
importance for capillary condensation in the symmetric
case.

The analog of (2) for asymmetric confinement re-
places 2cos@ by cosé, +cosf,, where 6, is the contact an-
gle at wall 1, determined by the surface field 4,, and 6;
is the corresponding quantity for wall 2. In the perfectly
asymmetric case h, ™= —h |, cosf, = — cos0), and the Kel-
vin equation predicts A, =0. Clearly this result is con-
sistent with symmetry considerations; any coexistence
must occur at bulk field 2 =0. For small A, we expect

© 1990 The American Physical Society 439



VOLUME 64, NUMBER 4

PHYSICAL REVIEW LETTERS

22 JANUARY 1990

partial wetting, 6,70, and there are no difficulties in en-
visaging coexistence of two distinct confined phases with
different magnetization profiles (see Fig. 2). This situa-
tion is akin to the symmetric case with h;=0; then 6
=nx/2 for all T but coexistence, and its accompanying
criticality, certainly occur.'=® The novel situation, which
has no direct counterpart in the symmetric case, arises
for larger h| when complete wetting occurs so that 8, =0
and 6,=r, the latter corresponding to complete wetting
of the wall-+ interface by the — phase, i.e., complete
drying. In this case it is difficult to imagine what phases
might coexist for finite L and the status of the Kelvin
prediction becomes uncertain. Indeed, it is straightfor-
ward to show that any macroscopic approach® that goes
beyond Kelvin, by including the effects of the wetting
and drying layers, predicts no coexistence.

We can investigate the possible phase equilibria using
the same continuum Landau theory used earlier? for the
symmetric case. The magnetization profile m(z) is ob-
tained by minimizing the free-energy functional

Fiml =, dz}b(dm/d2) +f(m())]
+b[4em?(0) —hm(0)]
+bl+em?*(L) —hom(L)], 3)

where b is a constant and c¢ is the surface enhancement
parameter. The bulk free-energy density is taken to be

flm)=taim?*+ Lam*—hmm, 4)

with {=(T—T,.»)/T:~ and a a constant. This func-
tional has been studied extensively for semi-infinite (L
=o0) geometry and the global phase diagram is well
known.® Provided ¢ > &, '(T,) continuous (critical)
wetting and drying transitions occur’ at a temperature
T, which is given by m +(T,,) =h/c. On increasing T
at fixed h, (or h at fixed T) a layer of positive magneti-
zation develops at the wall when the bulk phase, far from
the wall, has magnetization m — (T); h =0". The thick-
ness of the layer diverges continuously at T— T, [or as
h,— hi,=cm+(T), the critical valuel. The fields 6T
=(T,—T)/T. and 8h,=(h,, —h)/h,. are equivalent
for this transition and the critical exponents describing
the singular contribution to the interfacial tension, the
divergence of the film thickness /, and the transverse
correlation length &, are the same for both thermo-
dynamic paths:

ose—|sT|>"*, I~|sT| 7P,
Ei~ 8T (L=oo).

Within the present mean-field treatment® a; =0, 8, =0
(logarithmic growth), and v;=1; all forces are short
ranged. For T=T, and h=0" the wall is wet com-
pletely by + spin, / =occ, and 6=0. The drying transi-
tion occurs as a layer of negative magnetization develops
when the bulk phase has magnetization m +(T); h=07%.
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In this case 6=x for T= T, and h=0".

For finite L minimization of (3) yields an Euler-
Lagrange equation that can be investigated using a
graphical construction similar to that described in ear-
lier>® work. The equilibrium excess free energy per unit
area o=F —Lf(m,). If more than one solution exists,
the stable phase(s) corresponds to the profile with the
lowest value of o, for given (T,h,h,L). Specializing
now to h =0 and h, = —h, we find that for T > T, only
one solution, satisfying the boundary conditions, can ex-
ist for any finite L and the profiles are always monotonic
in this single-phase regime.® Note that 7, can be made
arbitrarily small, by increasing A, so that coexistence
can be suppressed until arbitrarily far below the bulk
critical point.

At first sight it may seem surprising that coexistence
should disappear for arbitrarily large L and A,0. How-
ever, unlike the infinite system, where each wall can ac-
commodate a macroscopic layer of the phase different
from the bulk, the finite system is frustrated by lack of
bulk and the competitive effects of the walls. The
compromise is a single phase with a monotonic profile
exhibiting a + — interface® at z=L/2. This does not
mean that critical points close to T, . never exist. By
decreasing h,, T,, can be made arbitrarily close to T, ;
see Fig. 1, which illustrates a section of the global phase
diagram, plotted in terms of the variables (7,h,,L ~").

Figure 1 indicates that T, does not constitute the crit-
ical temperature for any finite L. Inspection of the
graphical construction for 7 < 7, reveals a rather com-
plex structure. For small L (<L.) there is a single
monotonic solution whereas for large L multiple solu-
tions exist. If L > L,,, two distinct nonmonotonic solu-
tions exist with identical L and o—see the insets to Fig.
2. If L. <L <L,,, three solutions exist, all of which are
monotonic. Only two of them correspond to the same L

b
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FIG. 1. Sketch of the surface S of critical points. The criti-
cal wetting curve T, (h,;h =0) lies in the plane 1/L =0.
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and o; the other is a metastable state. All three solu-
tions become identical as L — L.*, so that the nature of
the bifurcation is of interest in its own right (see Fig. 2).
For L > L, two distinct phases of equal o coexist,
whereas for L < L. only one phase exists. The quantity
(826/0L %) 1 is zero for L— L.~ but is negative for
L— L. so that on the stable branches (826/8L2),,‘r is
discontinuous at the critical value L..

As T— T, (hy), L.(T,h;)— o and analysis shows
that

Tw—T. . =constxexp(—L/2&y), L— oo, ()

which is the main result of the calculation. This is clear-
ly of a totally different character from the mean-field
version of (1). Figure | shows that the surface of critical
points merges into the bulk critical point as £, — 0.

Two points of immediate interest are the following:

(i) The nature of the critical point.— There are three
routes by which the critical point can be reached from
the two-phase region: L— LY at fixed T hy, hi— hi;
at fixed L,T, and T— T, at fixed h;,L. It is straight-
forward to show that the three scaling fields 6L =(L,
—L)/Lc, oh, = (h e —hy )/h 1, and STE(TCVL - T)/Tc,L
are equivalent within mean-field theory. Consequently,
the discontinuity in the second derivative of o with
respect to L corresponds to a discontinuity in the heat
capacity. Moreover, it is possible to show that the order
parameter AT'= | [§dz[m,(z) —m3(z)]]|, measuring the
difference between the adsorptions for the coexisting
profiles, vanishes as AT ~&e'/?, where e represents any
of the three scaling fields. The transverse correlation

Metastable
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FIG. 2. The excess free energy per unit area o(L) for
T <Tw; ho=—h, and h=0. For L > L. the lower branch is
associated with two stable coexisting phases, while the upper
branch corresponds to a metastable state. The magnetization
profiles are nonmonotonic for L > L,,, the end of the metasta-
ble branch (see inset). For L < L. only one phase exists and
this has the monotonic profile shown in the other inset.

length &, diverges in the standard mean-field fashion
Ei~8e¢~ "2 and not in the (capillary-wave~-induced)
fashion of the critical wetting transition. The latter can
only occur in the semi-infinite (L =o0) system. We con-
clude that criticality in the asymmetric case is of the
same nature'? as that in the symmetric (h,=h); both
are standard second-order transitions within mean-field
theory. Furthermore, we conjecture that, in reality, cri-
ticality corresponds to that of the (d — 1)-dimensional
bulk system for both cases.

(ii) Heuristic scaling argument for the critical-point
shift.—Here we put forward a simple interpretation of
the result (5). This is analogous to the well-known inter-
pretation of (1) that states that the growth of droplets
within the film is determined by bulklike fluctuations un-
til, at the shifted critical point T, ,, the droplet size is
comparable with the smallest film dimension, i.e., L ~&,
~|T.w—T..|”". Note that the extent of the shift
does not depend on any transverse length scale. In the
asymmetric case the magnetization profile, for 7> T,
and large L, resembles that for a free interface located
near L/2. Alternatively we may regard such a profile as
that due to a wetting layer of thickness /=L/2,
developed at wall 1. But the growth of wetting layers is
associated with the exponent S; so it follows that L/2~1
~ | T —T..| " and we deduce that

T, — T, =constx (L/2) "'/ 6)

should be the general result for the critical-point shift in
the asymmetric case. In mean-field theory B; =0 and
(6) is consistent with the explicit result (5). We can
place (6) in a more formal context by means of a finite-
size scaling Ansarz. We recall that for the symmetric
case (1) follows directly from a scaling hypothesis "2 for
the singular part of the excess free energy. For the
asymmetric case we propose

oM~ (6T) " “a"PsT) (7

with §T=(T, —T)/T.. Such an Ansatz is consistent
with (6). It also predicts 05" ~Z ~ 7% yhen we sit
at a shifted critical point. The critical exponents for crit-
ical wetting satisfy the relations 2 —a; =(d —1)v, and
Bs=3—d)w/2 for d <3 (and for d=3, outside the
strong fluctuation regime). Thus o*"8~L ~7 for d < 3,
where 7=2(d —1)/(3 —d) is the exponent introduced by
Lipowsky and Fisher'' to account phenomenologically
for fluctuation effects at wetting transitions. In the
weak- and intermediate-fluctuation regimes in d =3,
=0 and we expect o*"8~exp(— L), the mean-field re-
sult. Notice that for d =2 the scaling arguments predict
o"—J 2 Of course, in this dimension the singular
contribution to the excess free energy should be evalu-
ated at a pseudo critical point, since no true phase tran-
sition can occur. !?

We have also investigated the applicability of (6) for
the situation where both wall-fluid and fluid-fluid forces
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are long ranged. Within the framework of density-
functional theory and “slab” approximations’®”® to the
density (magnetization) profiles we can show that if crit-
ical wetting occurs (L =oo) within such models then
there is a shifted critical point at finite L with T, ; given
by (6) and B; =1 when both types of force are of van der
Waals form.®> Moreover, the same kind of analysis can
be applied in the weak-fluctuation regime of critical wet-
ting. Again we recover (6) and rederive the result Ossing
~L™"

In conclusion, we have described a model system
where the location of the critical point is determined by
the (critical) wetting properties of the confining walls
rather than the bulk critical properties. Although we
have specialized to perfect asymmetry (hy= —h,), it is
fairly straightforward to show that our results are not re-
stricted to this special case. Provided one wall wets com-
pletely and the other dries completely above some wet-
ting or drying temperature, the same type of phase
equilibria will result.!?
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