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Shear-Induced Alignment of Colloidal Particles in the Presence of a Shear Flow
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We observed a shear-induced alignment of colloidal particles in a Brownian-dynamics simulation car-
ried out in the presence of an oscillating shear flow. As the shear rate y is increased for temperatures
near the melting point, we first observe shear thinning followed by a transition to a state with two-
dimensional order in the plane perpendicular to the flow. In contrast to earlier nonequilibrium
molecular-dynamics studies which also found a similar result, no thermostat is needed to keep the system
stable.

PACS numbers: 47. 15.Pn, 47.25.-c, 82.70.Dd

C»rge-stabilized colloidal suspensions are very valu-

able model systems for probing the effect of shear flow

on the properties of dense fluids and solids. ' Because of
the large particle size and spacing, the energy density
and elastic constants for charge-stabilized suspensions
are orders of magnitude smaller than those in conven-
tional atomic systems. Thus, at shear rates which are
readily accessible in the laboratory, it is possible to per-
form experiments in which the applied stresses are com-
parable to the energy density. As a result, many new

phenomena have been observed. One such phenomenon
is shear-induced melting, in which a dilute or semidilute
suspension which has long-range crystalline order (either
bcc or fcc ) at zero shear is observed to undergo a
series of structural changes as the shear rate is increased.
These structures include a flowing crystal, sliding layers,
and string and amorphous ordering of particles. Other
effects including laser-induced freezing and shear-in-
duced ordering have also been observed.

There have also been a number of theoretical and

computational investigations of the effect of high shear
rate y, though mostly for atomic fluids. The convention-
al simulation technique for studying the relation of rheo-
logical properties to microscopic particle order in pure
fluids is nonequilibrium molecular dynamics (NEMD).
However, to observe any effect for atomic systems, y has
to be very large (10' -10' sec '). This introduces con-
siderable energy into the system which must be continu-
ously removed by rescaling the pseudovelocity of each
particle, v;(t) —e„UT(z;(t)). Here r;(t) and v;(t)
denote the position and velocity of particle i, z;(r) is the
z component of r;(t), and e„UT is the expected profile of
the velocity in the z direction, UT(z) =zy. Using this
technique, several groups have observed the formation
of particle layers with the shear direction normal to the
layers and the formation of strings of particles parallel to
the velocity direction. However, because y's used in the
NEMD are so high, one must be concerned about wheth-
er the observed phenomena are real or an artifact of the
technique. One indication of the latter was recently dis-

cussed by Evans and Morriss who found that the shear-
induced alignment of particles into strings in these ear-
lier NEMO studies was in fact not real but simply due
to the form of the temperature thermostat. While their
results do not rule out a string-ordered phase entirely,
they do suggest that one should not expect to find it for
dense atomic fluids.

It is also not clear whether any simulation on atomic
fluids can be applied to colloidal suspensions. In particu-
lar, they do not take into account the liquid in which the
particles are suspended, either in the form of its contri-
bution to the suspension viscosity or in terms of the hy-
drodynamic interactions induced by the back flow of the
surrounding fluid. For these reasons, we have decided to
carry out a Brownian-dynamics simulation of suspen-
sions of charge-stabilized polystyrene spheres (polyballs)
in the presence of an oscillating shear flow. Because the
polyballs are large (& 300 A) compared to the sur-
rounding fluid, we treat the fluid as a viscous medium in

which the motion of the polyballs is overdamped. In
Ref. 9, we studied the self-diffusion in the fluid under
shear flow. %'e found, in agreement with the experimen-
tal results of Qiu er al. ,

' that aside from the usual
enhancement of the diffusion due to Taylor dispersion ''
in the shear-flow direction, there is an additional contri-
bution to the self-diffusion coefficient D in all three
directions which increases as y increases. Here we study
a similar system in the vicinity of the melting point
where we observe string ordering of the particles at rela-
tively low shear rates. Our results differ from earlier ob-
servations of this phenomena in that no thermostat is
needed in our Brownian-dynamics simulations. The
strong damping of the particles due to the viscous medi-
um is su%cient to keep the system stable. In this paper,
we present evidence for the string-ordered phase and
determine the phase diagram as a function of reduced
temperature and shear rate.

The system we considered consists of N identical
spheres of radius R dispersed in a fluid of dielectric con-
stant e at temperature T. Alexander et a/. ' have shown
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that in the dilute limit, the interaction between polyballs
can be treated by a repulsive Yukawa potential with a
renormalized charge Z* which differs from the bare
charge Z,

U(r) =Upaexp(2IrR)(1+xR) exp( —xr)/cr . (1)

Here e is the background dielectric constant, x is the in-

verse screening length, and Up Z e /ea. Experimen-
tally, K can be changed by adding counterions to the
fluid. We used the Brownian-dynamics method of Er-
mak' ' which is based on the Smoluchowski equation,
except that we added a shear flow in the x direction and

velocity gradient in the z direction. We neglected hydro-

dynamic interactions in the present study. Thus in the
presence of an oscillating shear of frequency m and am-

plitude A, the particle trajectories at time t+h, t are
determined by

r;(i+dr) r;(t)+(Dp/kT)F;(t)At

+br; +e„Az; sin(2arpr)ht, (2)

where F;(r ) is the force on particle i from the other par-
ticles. We set the mass m of each particle equal to 1.
The random displacement Br;, is chosen independently
from a Gaussian distribution with zero mean and vari-
ance ([br;, (r)I ) 2Dpht. Here Dp is the free diffusion
constant and A is the maximum displacement along the
shear velocity direction (x) (see inset of Fig. 1) by which
two particles can be separated due to shear flow if the
distance between them is one unit along the z direction.
We used periodic boundary conditions in all three direc-
tions and kept the volume constant. If a particle exited
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FIG. 1. Diffusion coefficients Dz/Dp as a function pf sheat
rate y at reduced temperature T 2.82 x 10 . D /Do in-
creases monotonically for y( y, . At y, =2.7, g)~/Do dtops
rapidly to a small value. Similar behavior occurs for D, . Inset:
The coordinate system in which the shear flow is along the x
axis and the shear gradient is along z. The shear rate is linear
along the z direction and does not change in the y direction.

from the top, it was introduced at the bottom with a shift

AL, sin(2ztpr ), where L, is the length of the box in the z
direction. The average shear rate can be defined as

y =(dx/dr)/z =2zruA(cos(2xrot)) =4Aco,

where the average & ) is over —,
' of a cycle. We chose the

time step h, t in the simulation to be 0.001to, where ro is

the time for a noninteracting polyball to diffuse an inter-
particle spacing a (N/V) '~ . In our simulation, the
amplitude A ranged from 1 to 10 and the Peclet number

P, a y/D & 1, indicating that the particles are convect-
ed much further than they diffuse.

For definiteness, we chose parameters to be compara-
ble with the recent experiments by Qiu er al. ,

' who

measured D in two directions under shear. The particle
size is R 0.091 pm and effective charge is Z~ ~400.
The screening length k ax is chosen to be 5. For Yu-
kawa systems, ' it is convenient to scale T by the Ein-
stein frequency for the fcc lattice at T =0, T =kT/
mrpsa . For k 5, mcp~a /Up=0. 3438 and the melting
point is at T =3.8&10 . Most of the simulations
were for N 500 particles in a cubic box. Some runs
were made with N 504 in a rectangular box with the
ratio of lengths of the three sides of the box equal to
7b:8(J3/2)b:9(3 ) ' b (b 2'~ a) to check that the
string-ordered phase was not an artifact of the cubic box.
In this system the x direction lays parallel to lines of
atoms in the x-y plane and a shear flow in the x direc-
tion would be along the most stable shear plane, the
(111)face.

We started most of our simulations from a liquid state
far above T and reduced the density slowly to reach the
desired phase point. Since all of the runs were either
slightly above or below T, the y 0 diffusion coef-
ficients were significantly less than Do. We then applied
a shear flow to the system by increasing y slowly from
zero, letting the system come to a stable state before in-

creasing y further. Typically we ran (3-8) X10 ht at
each point. The diffusion coeScients in the two direc-
tions perpendicular to the flow, Dy and D„ increase
monotonically ' with y, as shown in Fig. 1. Above a
shear rate y„which depends on T, the diffusion coef-
ficients drop very rapidly with increasing y, indicating
that some type of ordering may be occurring. To try to
understand what is happening above y, we examined the
projections of the position of each particle onto the x-y,
x-y, and y-z planes. From these projections, like those
shown in Fig. 2 for the temporal evolution of the system
after the shear was switched on, we can see that when
the shear rate is high enough, there is string ordering
along the x direction, in each x-y plane, close packed
along the z direction. Within each string the particles
are not ordered. Below y„we saw no evidence for string
ordering. Note that this string ordering is similar to that
observed earlier by NEMD simulations, though there it
may be due to artifacts of the thermostat.
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F&G. 2. Time evolutions starting from t 0 when shear was
applied. Three projection planes for a system in the string-
ordered phase, T 3.41&10 ' and y 20.
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We also calculated the structure factor S(k). Since
the system is anisotropic under shear Aow, we calculated
the anisotropic structure factor, e.g. , S(k, ) by choosing
k parallel to z. As shown in Fig. 3, the peak in S(k, ) in-

creases dramatically as y increases, confirming that in

the presence of a shear Aow layering has occurred. For y
far above y„ the peak height reaches a value of order %,
indicative of a near-perfect layering into planes with a
well-defined layer spacing. Along k~, the structure fac-
tor does not depend on the shear rate below y„ in agree-
ment with our earlier results. However, when y exceeds
y„ the second peak in S(k~) becomes larger than the
first peak. This increase in the height of the second peak
is due to the ordering of the strings into a triangular lat-
tice in the y-z plane as seen in Fig. 2.

The transition to the string-ordered phase appears to
be continuous. We made several runs in which we in-
creased the shear rate to values above y, and then back
down again. No hysteresis was observed. Over the
range of amplitudes l & 2 & 6 and frequency m that we
could study, the shear ordering and S(k) did not depend
on A and m separately, only on the product y. However,
at lower frequencies where the diffusive motion dom-
inates over the convective motion, it is possible that the
shear ordering may depend on amplitude and frequency
separately. This is an interesting regime for further
study.

To check that this string ordering was not an artifact

I0
0 2 4 6 8 10 12 14 16 18

a

&(k~) and S(k, ) at diA'erent shear rates for T
2.82X10 '. For low shear, below y, 2.7, the second peak

in S(k~) is lower than the first peak, while in the string-
ordering phase, the second peak is much larger than the first
one.

of the cubic box, we also made some runs with a rec-
tangular box containing 504 particles. We observed a
very similar string ordering in this system as well. The
critical shear rate y, was essentially the same as for
A =500. From the projection on the y-z plane as well as
S(k), we can easily distinguish the string-ordered phase
from a sliding fcc phase. Even though the N=504 sys-
tem is more favorable than the cubic N =500 system for
simply sliding the fcc layers over each other, the system
prefers to reorganize into the string-ordered phase.
Since we find similar results for the two systems, we be-
lieve that our results are probably not due to any
artificial constraint imposed on the system by the shape
of the box. As a final check, we also started our sirnula-
tions from the fcc phase and a layered state with only
eight layers. In both cases the final string-ordered state
was identical to that discussed above.

In Fig. 4 we present the phase diagram where we ob-
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X

Non-order

range interaction, A, =5, studied here.
In summary, we have observed for the first time a

shear-induced alignment of colloidal particles in a
Brownian-dynamics simulation. This phase which has
two-dimensional order in the plane perpendicular to the
Aow should generally be observable for a wide range of
colloidal systems provided the reduced temperature is
near or below T and A. is not too large.

We thank Mark Robbins, Paul Chaikin, X. Qiu, and
D. J. Pine for many helpful discussions.
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FIG. 4. The phase diagram of the string ordering, for ~ «
5. The melting temperature is T =3.8& 1o

serve string ordering in terms of T and y for X=5. We
used the height of the peaks in S(k~) as a simple criteria
to determine this phase diagram. When the height of
the second peak exceeded the first, we labeled this as the
string-ordered phase. The phase boundary agreed with
the point where the diffusion coefficients (Fig. I) de-
creased rapidly with increasing y. From the phase dia-
gram we can see that most string order occurs in the su-

percooled liquid region below T . Only for higher shear
rates is the phase boundary close to T . For T far above
T, there is no string ordering, consistent with the exper-
iments of Qiu et al. ' and our earlier simulations. Thus
for charged colloids it appears that one must be close to
the melting line to observe the string-ordered phase.
This is in agreement with simulations we have carried
out for X, 3 and 9.

We also tested whether the shear string ordering
would effect crystallization. Starting from a supercooled
liquid, we applied a large enough shear to reach the
string-ordering state. We then turned oA' the shear. The
system always returned to the supercooled liquid phase
and not a crystal. Thus the shear does not seem to help
the system to crystallize at least for the relatively short-
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