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Homoclinic Crossings and Pattern Selection
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The correlations between a homoclinic orbit (HMO) and coherent patterns in the nonlinear Schro-
dinger model are discussed. In a Hamiltonian situation, two independent patterns are revealed to exist:
One corresponds to a motion within an HMO, and the other, outside of an HMO. The study further il-

lustrates, when the Hamiltonian constraint is released, the significance of an HMO on the pattern dy-
namics by presenting the irregular HMO crossings and the resulting chaotic selections between the pat-
terns.

PACS numbers: 47.10.+g, 05.45.+b, 47.20.Ky

When fluctuations or very small perturbations force an
existing continuous system into a nonequilibrium situa-
tion where instability is possible, the entire system may
reorganize itself in such a way as to build patterns of or-
der. ' The Benard cell is a striking example. In recent
years, the study of coherent patterns in a continuous
medium has been a topical research area. ' In this
Letter, we discuss the significant role of the presence of a
homoclinic orbit (HMO) on the pattern dynamics in a
nonlinear dispersive medium.

The model is a one-dimensional medium which is
governed by the following nonlinear Schrodinger equa-
tion (NLS):

The NLS is one of the fundamental equations encoun-
tered in the modern theory of nonlinear waves. With the
form shown in (1), the NLS is the Hamiltonian and

possesses infinitely many constants of motion. For initial
conditions decaying sufficiently rapidly with large i xi,
the NLS is integrable by the inverse scattering transform
and admits, asymptotically, a finite number of stable soli-
tons. The NLS is also well known to admit the uni-
form-wave-train solution (also known as the Stokes solu-
tion)

where O. le' indicates the initial amplitude of the modu-
lation. %'e investigate the long-time evolution as we
vary 8 from 0' to 90' by means of numerical integra-
tion. Time integration is effected by using a predicting
leap-frog scheme with a correcting trapezoidal step,
which is accurate to second order without a time-split-
ting instability. s A pseudospectral numerical method is
employed for space integration.

When 8 0, we recover the same long-time evolution
as shown in Ref. 8, which is also displayed in Fig. 1(a).
Here, the evolution leads to a periodic collapse (forming
a localized wave packet) and broadening on a long time
scale. This behavior has been referred to as the FPU
(Fermi-Pasta-Ulam) recurrence phenomenon for a his-
torical reason. We have found that there are actually
two types of evolutionary patterns possible as we vary 8
from 0' to 90'. The other type (see also Ref. 9) is

displayed in Fig. 1(b), which is obtained when 8 is set to
90'. In this evolution, the localized wave packets
(LWP) recur differently in that the following LWP's are
displaced almost out of phase from the previous sites. By
comparison, the recurrence period of Fig. 1(b) is about

y, (t) -e", (2) 28

which is linearly unstable to infinitesimal sideband mod-
ulations of the form a|exp(iqx+ At)+a2exp( —iqx
+ A t). Benjamin and Feir gave the linear growth rate
as a function of an unstable wave number as

A(q)-( —q'+2q')'1', 0(q (J2. (3)

As shown in (3), the maximum instability takes place
when q q,„=1. This instability has been referred to
as the Benjamin-Feir instability, sideband instability, or
most frequently, modulational instability. The present
study considers only the initial conditions in which the
Stokes solution is modulated by the most unstable wave
number q q,„1as follows:

y(x, O) -1+O.le"cos(q,„x),
FIG. 1. Two types of evolution patterns. Envelope amplitude

i Vti is plotted. (a) 8 0; (b) 8 90'.
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FIG. 2. Phase trajectories. The orbit denoted by a is ob-
tained directly from the pattern of Fig. 1(a). Orbit b is taken
from the flip-flop pattern of Fig. 1(b). Arrows indicate the

irections of motion. It is expected that there exists an HMO
passing through the origin in between a and b.

twice as long as that of Fig. 1(a). This flip-flop charac-
ter starts to appear as 8 is raised beyond 45' thus fo 8
1ess than 45', the first pattern of Fig. 1(a) is realized
while, for 45' ~ 8~ 90', the second pattern of Fig. 1(b)
determines the long-time evolution.

What makes the difference between the two definite
evolutionary patterns? To answer the question, we need
to investigate the corresponding dynamics in the phase
space formed by the following two dynamic variables.
These are

A(r) - i y(0, r) i
—1,

A, (r) -dA(r)ldr;

(sa)

(5b)

thus, A(t) represents the amplitude-norm departure
from equilibrium at the origin. This diagnostic measure
turns out to provide crucial information. The phase tra-
jectories taken from Fig. 1 are shown in Fig. 2. The tra-
jectory denoted by a is obtained directly from the evolu-
tion pattern shown in Fig. 1(a), while orbit b is taken
from the flip-flop pattern of Fig. 1(b). Note that orbit b

possesses two (stable) paths into the origin, (A, A, )
(0,0), as well as two (unstable) paths pushed awaaway

from the origin. This implies that the origin could be a
saddle point. If so, orbit b suggests that the separatrix
passing through the origin in an asymmetric double-
loop-type homoclinic orbit. The FPU recurrence of Fig.
1(a) is then the trapped motion within one lobe of this
asymmetric HMO. A well-known property ' of an
HMO is that, as an orbit approaches an HMO, the orbit
period increases and in the immediate vicinity of an
HMO0, the orbit period diverges. %e observe this prop-
erty near the transition angle 8 =45, which is to be seen
in Figs. 3 and 4. Figure 3(a) exhibits the evolution for
8 44.9' and Fig. 3(b) displays the pattern for 8=45'
for the same time interval as in Fig. 1. As sho~n in F'

3
own ~n }g.

, both patterns exhibit much larger recurrence periods.
Thhe corresponding phase motions are sho~n in Fig. 4.
For simplicity, we only present the orbit taken from the

F1G. 3. Evolutions for (a) 8 44.9' and (b) 8 45'. By
comparison with the patterns in Fig. 1, the recurrence periods
are seen to be much larger.

pattern of Fig. 3(b), which is denoted by b in Fig. 4.
Note that the phase orbit corresponding to Fig. 1(b) is
also shown for comparison. The x mark on orbit b indi-
cates the starting point. It is observed that the trajectory
has not yet completed its orbital motion as it spends
much of its time near the origin. The reason that we do
not see an infinite period here is because of the initial
choice of amplitude in (4), which keeps the orbit a cer-
tain distance away from the HMO. As we decreased the
initial amplitudes in (4), we actually observed orbits
with periods that are much larger. The observations
made so far lead to the conclusion that the origin is truly
a saddle point.

%e now turn to a discussion of the main goal of the
Letter, which is concerned with the sensitivity of the be-
havior near the HMO as the Hamiltonian constraint is
released, as well as the associated pattern dynamics in

real space. For instance, one encounters the following

FIG. 4. Motion in phase space. The orbit denoted by b is
taken from the pattern of Fig. 3(b). For comparison, the orbit
corresponding to Fig. 1(b) is also shown. The x mark indi-
cates the starting point. Note that the trajectory spends much
of its time near A 0 before being pushed away.
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(b) parity under the given initial conditions of (4), the
chaotic motions observed would probably be character-
ized by an attractor of the lowest dimension of the sys-
tem.

In closing, we remark that the modulated Stokes solu-
tion has been proven, both experimentally' and numeri-

cally, to comprise two frequencies; one, a shifted Stokes
frequency and the other, a much slower modulational
frequency. The present study then implies that this
two-torus motion loses its stability to a chaotic motion
through a homoclinic instability.
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FIG. 5. Perturbed NLS. (a) The evolution exhibits a ran-

dom combination of the two patterns. Arrows indicate the mo-

ments of pattern change. (b) Corresponding motions in the

phase space for 0 ~ t & 440. Notice the irregular HMO cross-
ings.

perturbed NLS in plasma physics when a uniform plas-
ma is driven by an external rf 6eld:"

Here, we consider the initial condition which has led to
orbit b in Fig. 4, i.e., 8 45' in Eq. (4). Chaos is found

for cr 0 0001 a. nd g 0.0035. The chaotic motions are
displayed in Fig. 5. Figure 5(a) shows an evolution
which exhibits a random combination of the two patterns
of Figs 1(a) .and 1(b). The evolution is displayed for
13.64~ t ~82.28 and arrows indicate the moments of
pattern change. Figure 5(b) exhibits the corresponding
phase motions during 0» t ~440, where one observes
irregular HMO crossings. Figure 5 demonstrates that
the irregular HMO crossings correspond to the chaotic
oscillations, or selections, between the two patterns.
Equivalently, Fig. 5 illustrates that the presence of an
HMO is a potential source of complicated pattern dy-
namics. It is noted that as the evolution keeps its even
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