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We propose a new scenario of baryogenesis in which baryon number is an exact symmetry of the fun-
damental Lagrangian. If the global U(1) symmetry associated with baryon number is spontaneously
broken at early times (when the temperature was of order 1-100 GeV), then the out-of-equilibrium de-
cay of baryonic scalar particles can yield a cosmic baryon asymmetry in ordinary matter. This baryon
number is exactly compensated by antibaryon number in the vacuum. At low temperatures, the symme-
try is restored, and the antibaryons show up as neutral (antibaryonic) scalar particles or as nontopologi-

cal solitons.

PACS numbers: 98.80.Cq, 11.30.Qc, 14.80.Pb

The Earth, our solar system, and perhaps the entire
observable Universe are composed of protons and elec-
trons rather than antiprotons and positrons. This funda-
mental observation implies that early in the history of
the Universe, there must have been a small excess in the
number of protons as compared to the number of an-
tiprotons; if not, then baryon-antibaryon annihilations
would have completely wiped out both matter and an-
timatter. The baryon excess is usually characterized by
the dimensionless ratio B, defined to be the difference be-
tween the number density of baryons and antibaryons di-
vided by the entropy density. Today, B=10"'0. In
1967, Sakharov' set down the ingredients necessary to
produce a baryon excess. The most basic observation is
that if all fundamental interactions conserve baryon
number, then the baryon number today depends on ini-
tial conditions.

The grand unified theories (GUT’s) of the 1970s
opened up the possibility that baryon number is not con-
served. Generically, GUT’s predict that the proton will
decay at a rate ~g*m,(m,/mx)*, where my is the mass
of the boson which mediates baryon-violating interac-
tions, g is the coupling constant for these interactions,
and m, is the mass of the proton. (Here and throughout,
we use units in which h =c=kp=1.) Today, the rates
for proton decay and other baryon-violating interactions
are highly suppressed because my is very large (my
~10'S GeV). However, in the early Universe, when
temperatures were of order my, baryon-violating interac-
tions would have occurred at a rate comparable to other
processes. So long as Sakharov’s other conditions (C and
CP violation and a departure from thermal equilibrium)
were met, the proton excess could have been generated
by fundamental process’ and would therefore be in-
dependent of initial conditions.

In this Letter we propose a different paradigm for
baryon violation; one which allows— perhaps even
forces—the baryon excess to be generated at relatively
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low temperatures (T~1-100 GeV). We assume that
the fundamental Lagrangian governing all interactions is
completely baryon symmetric; that is, it is invariant un-
der the simultaneous [U(1) ] transformation
vi— ey, )
where y; are the fields in the Lagrangian and b; are their
baryon numbers. However, we also assume that baryon
number is spontaneously broken [i.e., that at least one
field carrying baryon number gets a vacuum expectation
value (VEV)] at early times. As long as Sakharov’s oth-
er requirements are met, an excess of baryons over anti-
baryons can develop. Why then is baryon number ap-
parently not violated today? As the Universe expands
and cools, the VEV’s of the baryonic fields disappear (or
at least get very small); thus at low temperatures U(1)p
is restored. Although low-temperature symmetry reso-
tration is counterintuitive, it has been observed in the
ferroelectric behavior of Rochelle salts® and has been an-
alyzed for a variety of reasons by many authors.*
One consequence of our assumptions has no analog in
scenarios with explicit baryon violation. A baryon-
symmetric Lagrangian leads to equations of motion

dB/dt=0. When baryon number is spontaneously
violated, this becomes?
dB [d_B] -0 .
dt particles dt vacuum

Therefore, any baryon-antibaryon excess generated is ex-
actly compensated by an excess in the vacuum. For ex-
ample, if the field which gets a nonzero VEV is a scalar
field, then its baryonic charge density is 7z |vacuum
=ib,(¢*0—6*¢). The VEV of ¢ must therefore be
nonzero and also time dependent in order to compensate
any baryon asymmetry in particles. If the Universe
starts out with B=0, then Eq. (2) tells us that the
baryon density in the vacuum is equal and opposite to
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the baryon density in particles: 7z lvacuum = — 115 |partictes-
At low temperatures, when the VEV’s go away (or get
small), this antibaryon number must show up some-
where. We will offer several suggestions as to what form
this antimatter might take today.

The fact that the Universe contains as much an-
timatter as matter suggests that the energy scale for
baryon-symmetric baryogenesis is relatively low
(~1-100 GeV). This follows since the total energy den-
sity of the antimatter today—in whatever form it
takes—is pam =ng(E/Q), where E/Q is the energy per
baryon number of the antimatter. This energy density
cannot exceed the critical density of the Universe:
Qam=pam/pc <1. Since protons contribute Qp
~107'-1072, E/Q of antimatter must be less than
(10—100)m,,. Naively, and indeed in most of the models
we have examined, the interesting physics responsible for
baryogenesis must be in this energy regime. A low-
temperature scenario for baryogenesis has a number of
advantages over high-temperature (e.g., GUT-inspired)
models. For example, the reheating temperature in
inflationary models must be above the scale of baryo-
genesis in order that the baryon asymmetry produced not
be diluted during the inflationary epoch. GUT-scale
baryogenesis therefore requires a high reheating temper-
ature, and this is difficult to achieve in realistic models.
On the other hand, baryon-symmetric baryogenesis is
compatible with a much lower reheating temperature.

In what follows, we will present our main results. De-
tailed calculations will appear in a forthcoming publica-
tion.® As discussed above, U(1)z must be spontaneously
broken at high temperatures. A simple *““toy” model in-
volving two complex scalar fields ¢ and o illustrates
how this might arise. Consider the Lagrangian
L=]9,01>+18,0|*—V(¢,0), where

Vig,0)=mg o> +ailo|*+a:lo|*—2a3]91*|o]?, (3)

and m¢2 >0 is the mass of ¢. The a; are assumed to be
real and positive. Furthermore, a a, > af is required to
ensure that the potential be bounded from below.
V(¢,0) has its minimum at {(¢) =(o)=0. By definition,
this is the zero-temperature vacuum state. However, at
finite temperatures there are quantum thermal correc-
tions to ¥ which change this state. Using standard tech-
niques,* we calculate the effective (one-loop) tempera-
ture-dependent potential V(¢,0;T) =V (¢,0)+V (T),
where

2 2 2 2
Vi(T) ‘T—LLIQal —a3)+1—|65|—(2a2 —a3). (4)

If we assume that 2a; < a3 <2a,, then when T> T,
[=V6my/(a3—2a;) %] the minimum of V(¢,0;T) is at
(6)=0 and (¢)=x(T2—T2)'2, where x=[(a;—2a;)/
12a|]'/2. That is, at temperatures above the critical
temperature T, the U(1) symmetry associated with ro-
tations of ¢ is spontaneously broken. In passing, we note

that o need not be a single complex scalar and in fact
could be the standard-model Higgs doublet.®
Now consider the interaction Lagrangian

Ling=Aomye0* 9107 +A3my0* 0,63 + 110, UTCD
+/203UTCE+ f33UTCE+H.c., (5)

where SU(3)r indices have been suppressed and C is
the charge-conjugation matrix. U, D, and E refer to or-
dinary quarks and leptons. For simplicity, we consider
only one generation, and, in the particular, the heaviest
generation so that U, D, and E are the top quark, bottom
quark, and 7 lepton, respectively. Furthermore, we as-
sume that the fermions are right-handed, SU(2); sing-
lets. The generalization to left-handed fermions or to
more than one generation is straightforward. The La-
grangian in Eq. (5) is symmetric under a global U(1)g
symmetry [Eq. (1)]. The SU3)coiorXU1)emxU(1)p
content of the scalar fields, as inferred from Eq. (5) and
the known quantum numbers of the quarks and leptons,
are ¢(1,0,—1), ¢,3,—3,— %), ¢,3,—%,%), and
¢3(3,— 7,3 ). We see that ¢ has baryon number —1,
so when ¢ gets a VEV, U(1)3 is spontaneously broken.
For further reference we note that we could have as-
signed ¢ baryon number — § so that the U(1)z invari-
ant couplings become 1;0*¢*¢,0. The development of
a baryon asymmetry is similar in these two models, but
the subsequent behavior of the Universe differs dramati-
cally.

A nonzero VEV for ¢ implies that there are mass-
mixing terms for ¢, ¢, and ¢;. These are represented in
Feynman diagrams by propagators that change one ¢; to
another as in the diagram for the process ¢,— UE
displayed in Fig. 1. Since ¢;—and the same holds true
for ¢, and ¢3— couples to two modes (UD and UE) with
different baryon numbers (— } and %) it can no longer
be assigned a baryon number. Thus, when U(1)p is
spontaneously broken, a baryon-symmetric Lagrangian
becomes similar to ones considered in GUT-based mod-
els.?

Let us now turn to the early Universe, and specifically
to a time when the temperature was above 7,. We as-
sume that at some temperature Tp (less than the masses
m; of ¢; but greater than T,) there are equal number
densities ng of ¢1, ¢, and ¢; particles and antiparticles.
If the ¢;’s are in equilibrium, then when they decay no
asymmetry will be produced in the quark fields. Howev-
er, if the ¢;’s decay when they are out of equilibrium,
then an asymmetry in the quark fields can develop. Thus
we assume’ that no= T3; that is, there are many more
¢;’s than there would be in equilibrium (in equilibrium
nee ™) The final baryon excess (in ordinary
matter) is then given by the asymmetry produced per de-
cay times the number density of decaying particles at
Tp. First we calculate ¢;, the net baryon number pro-
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duced in the decay of ¢; and its antiparticle,
e,-s]_lj[;—r(:p,-—» UE)— 3$1(¢;— UD) — 1(;— UE)+ 11 (3;— UD)]. 6)

Here, I'; is the total decay width of ¢;. The leading contribution to ¢; comes from interference terms between tree-level
and one-loop graphs. The result (say, for i =1) is

_ Im(f3 fAA )T =TI m} g [m_zz] _y [21—32” , N

(mt —m3)mt—m?)

€]

mij mi

where J(n)=—(4z) "'[1—nIn(1+1/9)]. (Here, we
have taken m?>,|(¢)|m,) We note that the cou-
pling constants must be complex for there to be a
nonzero ¢€; that is, CP must be violated. Furthermore,
does not depend on the phase of ¢ though it does vanish
if (¢>=0. (If it did depend on the phase of ¢, there
would be small domains of baryons and antibaryons.)
Finally, note that all five terms in Eq. (5) are necessary
to get a nonzero €. To calculate B, the ratio of this ex-
cess to the entropy density, we must take into account
the increase in entropy due to the extra particles pro-
duced in decays. For simplicity, we can take all the m;’s
to be of order m; then all the ¢;’s are comparable (¢, ~¢)
and

—3/4

o €, (8)

(22/30)g« T3

3nom
(72/30)g« TH

=

where g« (~100) is the effective number of degrees of
freedom when T=Tp. Clearly, with a reasonable choice
of parameters, B can be ~10 ~19 We note that both in-
verse decays (e.g., UE— ¢;) and baryon-violating
scattering processes (e.g., UE— UD) can potentially
wash out the asymmetry. This is avoided if the respec-

E
FIG. 1. Baryon-violating decay made possible by the vacu-
um expectation value of ¢. The X represents the mass-mixing
term A2my{9)* 9107 .

342

tive rates are less than the expansion rate at Tp. The ex-
act constraints depend sensitively on Tp and the top-
quark mass. However, as long as Tp and m, are smaller
than m, the constraints can be easily satisfied.

The baryon asymmetry generated in the quark fields is
exactly compensated by a density of antibaryons in the
vacuum. The simplest vacuum configuration with
nonzero baryon density has ¢=ve “/v2 with
v?® =ng |parictes. At temperatures above T, ¢ sits at the
minimum of its potential [v/~2=x(T2—T2)'?], and
is just mp/2x "2(T?—T2)~'. When the temperature
drops below T., the minimum of the ¢ potential is at
¢ =0. However, because the baryon number in the vacu-
um is nonzero, v cannot be zero everywhere. To gain
some understanding as to how ¢ behaves today, let us as-
sume that ¢ is homogeneous in space and consider the
zero-temperature, small-oscillation expression for its en-
ergy density p,=(w?+m})v?/2. Substituting ng/v? for
o and minimizing with respect to v we find that
v =_(ng/my) "%, @ =m,, and p,=mynp. These results in-
dicate that the ¢ field is behaving like a condensate of
cold (zero-momentum) ¢ particles.

Observations today place several obvious constraints
on the parameters of this theory. We know that m, must
be greater than m, or else the proton would decay into a
¢* and a positron. If the antibaryon number of the
Universe today is in the form of cold ¢ particles, then an
upper limit on m, follows from cosmological considera-
tions. Assuming that most of the ¢ particles have not yet
decayed, their energy density, as compared to the closure
density p., is

Q,=py/p. =0.03h ~2(m,/m,)(B/107'°)

where Ho=100# km/secMpc is the Hubble parameter
today. This places a tight upper bound on m, but also
suggests the interesting possibility that ¢ particles close
the Universe; that is, the dark matter is actually an-
timatter. An additional constraint comes from the fact
that ¢ can decay into an antiproton and a positron, po-
tentially wiping out the baryon asymmetry. We estimate
the lifetime of the ¢’s to be (1 sec)r ~2f ~*(m,/m,)°
x[m/(1 TeV)I®. It is possible to make this lifetime
greater than the age of the Universe by requiring the
Yukawa couplings to light generations to be much small-
er than those to the heavy generation, but this would re-
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quire fine tuning the radiative corrections. A more natu-
ral model is one in which ¢ has baryon number — 5. In
this model, ¢ depletion takes place due to scattering
¢o— pe* and this rate is always much smaller than the
expansion rate.

Until now we have assumed that once U(1)g was re-
stored, the antibaryon number in the vacuum generated
during the baryogenesis epoch was transferred to free ¢
particles. Actually, the lowest-energy configuration,
given a fixed baryon number, may be quite different. We
now discuss the intriguing possibility that the lowest-
energy state is one with ¢ =0 everywhere except in cer-
tain localized regions of antibaryonic charge. That is,
we suppose that the antimatter created during the baryo-
genesis epoch is found today in nontopological solitons
(NTS’s).® Indeed, following an epoch of baryon-
symmetric baryogenesis, the Universe is ripe for NTS
formation, since the vacuum necessarily contains a
nonzero charge density (baryon number) associated with
a global symmetry [U(1)3], precisely the situation pos-
tulated ad hoc in previous discussions of NTS forma-
tion.? The scenario is as follows: As T falls below T,
¢’s potential drives {¢) to zero and U(1)p to symmetry
restoration. However, the vacuum is charged with anti-
baryon number. If there is some attractive force be-
tween ¢’s, then NTS’s (here, bubbles of antimatter or
BAM’s) will form. Before discussing specific models for
BAM’s, we mention that there is a model-independent
upper limit on the charge of a BAM set by the charge
within the horizon at the time when they form:
Qmax=10%(B/10 ~'°)(m,/T;)?, where T, is the tem-
perature when the BAM’s form.

BAM’s similar to Coleman’s Q-balls'® can form if the
potential for ¢ is of the form V(¢)=m?|¢|>*—1|o|*
+|o |8/M 2, where M is some mass scale and A > 0. Of
course, ¥ (¢) must be an effective potential calculated
from a more fundamental theory (presumably at the en-
ergy scale M) since ¢° interactions are nonrenormaliz-
able. Here, it is the attractive ¢4 interaction that sta-
bilizes the Q-ball. The mass of the Q-ball is
E =0m,[1 — (AM/2m,)*1'? (clearly less than Qm, as it
must be to ensure stability against dispersion into free
particles) and its radius is R=(Q/AM’m,)'>. A BAM
with Q =10%? would be about a millimeter in size and
weigh about 10'° g, roughly equal to the mass of a large
mountain. BAM’s can also form in a renormalizable
theory with two or more scalar fields. '

Baryon-symmetric baryogenesis appears to be an at-
tractive paradigm for explaining the observed proton-
antiproton asymmetry. One definite prediction, that the
number density of antibaryons be the same as the num-

ber density of baryons, distinguishes this scenario from
scenarios in which baryon number is violated in the fun-
damental Lagrangian, and should lead to astrophysical
consequences. Moreover, since the natural energy scale
for baryon-symmetric baryogenesis is in the GeV range,
signals should appear in particle-accelerator experi-
ments.
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