
VOLUME 64, NUMBER 26 PHYSICAL REVIEW LETTERS 2S JUNE 1990

Quantum Fluctuations and the Single-Junction Coulomb Blockade
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%e investigate the eA'ect of quantum Auctuations on the Coulomb blockade in a single tunnel junction
coupled to its environment by a transmission line of arbitrary impedance Z(to). The quantized oscillat-
ing modes of the transmission line are suddenly displaced when an electron tunnels through the junction.
For small Z (relative to the quantum of resistance), a weak power-law zero-bias anomaly occurs associ-
ated with the infrared-divergent shakeup of low-frequency transmission-line modes. For large Z, the full
blockade is recovered. Comparison with recent experiments is made.

PACS numbers: 73.40.Gk, 74.50.+r

Recent technological developments have allowed the
study of tunnel junctions with capacitance so low that
the charging energy associated with a single electron can
be several meV. ' This has interesting consequences at
low temperatures, including the Coulomb blockade, 2 the
Coulomb staircase, 3 and various oscillatory and dynam-
ic effects. Because of the difficulties associated with
stray capacitance, the clearest observations of these
effects have been in multijunction arrays. Recently,
however, several groups have reported the observation
of a partial blockade in a single junction fed by a
transmission line. The strength and line shape of the
blockade appear to be controlled by the (frequency-
dependent) impedance of the transmission line. The pur-
pose of this paper is to show how the high-frequency en-
vironment of the junction affects the tunneling. Such
questions have been extensively studied in connection
with macroscopic quantum tunneling in superconduc-
tors, ' but very few studies of normal junctions ex-
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The essential physics in the semiclassical theory'
of the Coulomb blockade is that the tunneling electron
gains energy e V at bias voltage V, but must pay a charg-
ing cost of E, =e /Co, where Co is the junction capaci-
tance. If the net energy gain is not positive, then (at
zero temperature) there is no empty final state available
and Pauli blocking forbids tunneling. In this paper we

go beyond the semiclassical theory to a full quantum-
mechanical treatment of the charging energy by consid-
ering the fluctuations in the electromagnetic modes cou-
pled to the junction.

A line of impedance Z leading to the tunnel junction
allo~s the junction to discharge and dissipate its energy

in a finite time rz= CoZ. If —the energy uncertainty h/rz
associated with this time exceeds E„ then the blockade
will be weakened. This sets the characteristic impedance
scale for the classical-to-quantum crossover to be the
quantum resistance RH =—h/e . (Note the difference of a
factor of 2 in our definition of RH relative to that in Ref.
l4.)

Following the seminal work of Caldeira and Leggett, '

there has been considerable interest in the question of
tunneling in the presence of dissipation. ' Part of the
focus of this work has been on the question of the
response of the dissipative medium during the time the
system is under the barrier. Biittiker and Landauer'7
have defined a traversal time rT which provides an esti-
mate of the duration of the tunneling event. This time
can be long for macroscopic quantum tunneling in small-

gap systems like superconductors, but is very short for
single-electron tunneling through an oxide barrier. ' We
therefore make the ansatz that the low-frequency
transmission-line collective modes can be treated as har-
monic oscillators which are displaced suddenly. An ad-
ditional assumption is that the junction impedance is
very high (R»RH) so that the time between tunnel
events, e/I, is long and coherence effects between
separate events can be neglected. ' That is, as a result
of the inequality rT « tz «e/I, we can neglect correla-
tions between tunnel events and the only significant time
scale in our model is the discharge time rz.

Here, we outline a method for treating tunneling into
a quantum transmission line and present some results on
simple models of physical systems. First, we consider
ideal transmission lines and show that the blockade be-
havior depends strongly on the impedance of the line.
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with co, the frequency eigenvalue of the normal mode.
We need to compute the shakeup spectrum generated

by the sudden displacement of the coordinate v0p by the
amount )lk, [where k =(e/Cp) ') e/)'t] due to the tunnel-
ing of a single charge e. At zero temperature, the initial
state of the oscillator system just after the tunneling
event is ! 0(0))=exp( —imp)! 0), where the generator
of displacements pp is simply the momentum conjugate
to yp and ! 0) is the ground state. The boson shakeup
spectrum is computed from the Green's function

Then, we consider the more realistic case of dissipative
lines and lines containing impedance discontinuities
which produce reflected waves.

We first model a transmission line in a lumped-circuit
description as a collection of N identical capacitors
C, =c, inductors I, and resistors r (see Fig. 1). For the
moment we take the dissipationless case r=0. The
canonical coordinates are the charges of the capacitors
qp, q), . . . , q)v, where qp refers to the charge on the
tunnel-junction capacitor Cp and the remaining variables
refer to the transmission line. The Lagrangian for the
circuit may be expressed in the form

)V N . 1
iv

&=—Z Zv, M~V~ — Z~,',
2 j ok 0 2& j~o

where M is some symmetric matrix (whose specific form
will not be required) and ((0) —= (e/C)) ') q). This is diago-
nalized by defining new coordinates Q, by v0J = J, ()c,(j)
xQ„where ()c, is an orthonormal basis function satisfy-
ing

).

000~
Z, (co)

FIG. 1. A schematic model of a tunnel junction Co connect-
ed to an RLC transmission line terminated by an impedance

Z, (co) after a length d.

where f(t) —= (0!pp(t)pp! 0). Using pp(t) =g (tc, (0)
xP.(t) (where P, is conjugate to Q, ), and from the
Hamiltonian obtaining (0!P, !0) =)l/2cco„we have

f(t) = a(co)e
'" dco )t

4 0 2Z 2cQ)

where the spectral density is

a (co) =—2m g! ()c.(0) !'8(co —a).) .

(4)

=)'tX a(co)cos(cot) .
dN

4o 2x
(5)

Thus the spectral density can be obtained directly from
the Fourier transform of the classical time dependence,

We can bypass formal solution of the eigenmode prob-
lem by noting that f(t) is determined by precisely the
same physics that controls the classical discharge of the
junction. The classical time dependence of the charge
decay is identical (for a harmonic system) to the expec-
tation value of the quantum result,

vip(t) (0!exp(ikpp)(pp(t)exp( —ikpp)! 0)

Q(t) = ie(t)(e(t)—i e(0)) a(co) = —4Re l

ico —1/Cpz*(co)
' (6)

= —ie(t)exp'. '[f(t) —f(0)]], (3)
The final expression for the Green's function is

Q(t) = —ie(t)exp „Re, (e '"' —1)
e' dco 1 —4

2Cp " 2K )tco )co —1 CpZ
(7)

Readers familiar with the macroscopic quantum tunnel-
ing ' ' or x-ray photoemission' literature will recog-
nize that the shakeup spectrum, 2 (co) = —21m@(co
+ib), has a characteristic infrared divergence, A(co)
-cog ', where g=2Z(0)/RH. We use the integral-
equation method of Minnhagen to solve for this spec-
tral density.

If an electron from the Fermi level tunnels, it arrives
with excess energy eV above the Fermi level on the other
side. The Pauli principle limits the allowed boson shake-
up to this amount. Hence (at T=O) the differential con-
ductance obeys

dI 1 ~'~i" dao

dV R "o 2'
where R is the junction resistance. The spectral density

dl/dV = Vg. (10)
It is clear from Eq. (7) that the discharge time iz,

rather than the traversal time rT, sets the important ul-

!
sum rules fp (dco/2z)A(co) =1 and fp (dho/2x))'tco
xA(co) =e2/2Cp guarantee that, in the limit of large
voltage, the conductance will obey the usual Coulomb
offset,

)V= V—e/2Cp

R

That is, the mean shakeup energy is exactly the classical
charging energy. In the opposite limit of small bias, the
infrared divergence in A(co) implies a power-law zero-
bias anomaly for the conductance,
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traviolet energy scale. Within the framework of this
model the traversal time rT corresponds to a much
higher frequency which is largely irrelevant. %e can,
however, improve on the sudden-approximation aspect of
the model by noting that boson modes at frequencies
higher than the inverse traversal time will be displaced
adiabatically rather than suddenly and hence will suffer
no shakeup. The only effect is to slightly renormalize Co
upwards due to the distributed capacitance in the
transmission line within a distance crT, where c is the
speed of waves in the line. However, this is not directly
relevant to the low-energy physics, as is evident from Eq.
(10), where the exponent g is independent of Cu. It does,
however, reduce the asymptotic offset given by Eq. (9).

For large g, the shakeup spectrum is peaked around
the classical energy and, as shown in Fig. 2, we recover
the full Coulomb blockade (smeared out by quantum
fluctuations). For small g, we see the characteristic
power-law zero-bias anomaly. The shakeup spectrum
has, in addition to the cos ' divergence at low energy, a
long tail out to energies of order E,/g (for small g). The
origin of this Lorentzian tail is the energy uncertainty
h/rz associated with the rapid discharge of the tunneled
electron into the transmission line. The existence of this
effect means that the I-V characteristic has an extensive
nonlinear regime and does not achieve the sum-rule form
given in Eq. (9) until rather large voltages V=e/2Cog.
We emphasize that all curves have the same asymptotic
offset.

Our results (applicable only to high-resistance junc-
tions) are in qualitative agreement with experiment.
For low-impedance transmission lines, one sees a weak
zero-bias anomaly with a rather broad nonlinear region
before saturation at large voltages. This behavior is par-
ticularly clear in the inset of the upper panel in Fig. 1 of
Cleland, Schmidt, and Clarke.

Ideally, the present model could be tested by making
transmission lines with a wide range of specific induc-
tances and capacitances, but it is rather difficult to pro-

duce lossless transmission lines with impedances which

differ significantly from the free-space impedance of 377
O. It is possible, however, to increase the impedance by
including dissipative elements in the transmission line,
making the long-time low-frequency decay diffusive. In
the spirit of Caldeira and Leggett, ' we include extra bo-
son degrees of freedom to model the dissipation. If we
take these to couple in the Lagrangian in Eq. (1) to all

of the p's and i's (including jc but not v~0), then all of
the formal results above follow without modification by
simply recomputing Z(tu) with the dissipation included.

In Fig. 3 we show results for the zero-bias anomaly for
the case of an extremely resistive transmission line at a
series of different temperatures. ~' Because of the strong
frequency dependence of the transmission-line im-

pedance (dominated by the specific resistance and capac-
itance), the zero-temperature result (curve a) is very
different from any of those for the lossless transmission
line shown in Fig. 2. In fact, it is not particularly useful
to describe this curve by a single exponent. There is both
a strong blockade at low voltage and a tail that extends
to very high voltages. Because of a combination of these
effects, the I-V curves initially appear to reach a
blockade limit with a capacitance larger than the actual
junction capacitance. The inset in Fig. 3 shows the ratio
of dI/dV at zero voltage to the value of dI/dV at
asymptotically large voltage (the "bare" junction im-

pedance). Note that the semiclassical model (thermal
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FIG. 2. The current-voltage characteristics of a tunnel junc-
tion connected to an infinite, lossless transmission line of im-
pedance Z gRH/2. R is the asymptotic value of (dI/dV)
The curves were calculated at zero temperature in the limit
that the junction impedance R goes to infinity.
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FIG. 3. The current-voltage characteristics of a tunnel junc-
tion connected to a resistive transmission line at finite tempera-
ture. The curves a-g are for temperatures 0, 0.5, 1.0, 2.0, 5.0,
10, and 20 K. The parameters are junction capacitance Co

0.2 fF, specific resistance r 8000 0/pm, specific capaci-
tance c 0.02 fF/pm, and specific inductance i 600 fH/pm.
Inset: The values of R(0)/R plotted vs the charging energy
over the temperature for these same curves (open circles). The
dashed line gives the semiclassical result. The solid circles
show R(0)/R for a series of junctions at constant temperature
T 1.3 K as the junction capacitance is varied over CO=0.05,
0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 fF.

3185



VOLUME 64, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JUNE 1990

fluctuations only) gives a strong, essentially exponential
(Arrhenius) temperature dependence while the quantum
fluctuations yield a much weaker temperature variation
(which can be quite slow for low Z). The quantum
Langevin model used by Cleland, Schmidt, and Clarke
correctly captures some of the physics of quantum
smearing of the blockade by zero-point fluctuations of
the instantaneous charge on the junction. However, it
incorrectly treats the dynamics and completely misses
the slow divergence of R(0) (which is rigorously present
in the model) as the temperature is lowered. On the oth-
er hand, the quantum Langevin model has the advantage
of being simple to extend to the case of finite current.

One of the interesting features of the data of Delsing
et al. is the appearance of small oscillations in dl/dV in
the wings of the curve. Nazarov has attributed these
oscillations to random features in a universal conduc-
tance fluctuation type of model. We have considered the
possibility that they are due to wave reflection from the
discontinuity in the structure at the contact pad which is
located23 1.5 mm away from the junction. The reflected
waves produce periodic resonances' in Z(co) and hence
modulation in the conductance which by suitable choice
of parameters can be made qualitatively consistent with
the data. However, we find that the oscillations wash out
very rapidly with temperature and the data (over the
small range shown in their papers) do not seem to show
as strong a long-range tail as we find in our results for
any reasonable set of parameters. While this im-
pedance-discontinuity model may not explain the oscilla-
tions seen by De]sing et al. , we propose that such oscilla-
tions could be observed in an experiment specifically
designed to search for them.

In summary, we have investigated the Coulomb
blockade in a single small tunnel junction coupled to its
environment through a transmission line of arbitrary im-
pedance. Quantum fluctuations of the transmission-line
modes smear out the blockade at low impedance relative
to the quantum impedance, leaving a power-law zero-
bias anomaly. The full blockade is recovered only for
high impedance, but even there the asymptotic offset of
the I-V curve is not achieved until surprisingly large volt-

ages relative to the width of the blockade.
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Note added. —After the original submission of this
manuscript, a paper by Devoret et al. ' appeared which
treats the same model considered here.
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