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Vector-spin models with competing interactions have in general nontrivial ground states which com-
pletely break rotational invariance. We study the prototypical stacked triangular Heisenberg antifer-
romagnet by means of a O(3) x0(2)/0O(2) nonlinear o model in a 2+ ¢ expansion. We find a dynami-
cally generated O(4) symmetry. We propose that such systems in three dimensions have a first-order
transition or a second-order one with either N =4 or tricritical mean-field exponents. We argue that this

view is supported by experimental and numerical data.
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Vector-spin models with competing exchange interac-
tions have in general canted ground states. As a conse-
quence, in the low-temperature phase the O(3) group of
spatial rotations is completely broken. The relevant or-
der parameter is thus no longer a vector but a rotation
matrix. There is still a controversy about the nature of
the phase transition that occurs in such systems when
D=3. This is the case of stacked triangular antifer-
romagnets' (STA) and body-centered-tetragonal?
(BCT) lattices with Heisenberg spins where results of
renormalization-group calculations in 4 — ¢ have been in-
terpreted as evidence of a first-order transition,>* while
recent Monte Carlo (MC) simulations'? in D=3 con-
clude in favor of a continuous transition. The question
that naturally arises if the transition is continuous is
whether or not canted-spin systems belong to a new
universality class.

The purpose of this Letter is to shed light on the criti-
cal behavior of STA and related models in dimension 3
by means of 2+ ¢ renormalization-group calculations.
Canted magnets are frequently encountered in nature
and detailed experimental studies have been performed.
Examples are the helical magnets Ho, Dy, and Tb. In
addition, the dipole-locked A4 phase of helium-3 shares
the same symmetry-breaking pattern.* Many theoretical
Heisenberg models such as STA, BCT, stacked Villain
lattices, and helical models, among others, are expected
to be relevant to the experimental situation. These mod-
els are described by the following Landau-Ginzburg-
Wilson effective action: 34
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where the vectors have three components. This action
has been intensively studied by means of renormaliza-
tion-group (RG) techniques. In these works, a c-axis an-
isotropy is usually considered as irrelevant; we shall use
the same hypothesis in this paper. It has been shown
that no stable fixed point occurs up to order €2 in an ¢
expansion in the neighborhood of dimension 4. This fact
has been interpreted as the signature of the occurrence
of a first-order transition in three dimensions.>> Howev-
er, MC data suggest that a stable fixed point manifests
itself at a finite distance from D=4. To study this intri-
guing phenomenon there is another general strategy
available which is the perturbative expansion near two
dimensions of a nonlinear o model® (NLo). We shall
thus investigate the critical behavior of the NLo model
suited to the symmetry-breaking scheme of the above-
mentioned models, by means of field-theoretic RG tech-
niques’ in a 2+ € expansion.

The effective theory describing the long-distance prop-
erties of the Goldstone modes of these models is obtained
in a standard way by letting the mass of the massive
fields in the action (1) go to infinity. In this limit, the
remaining fluctuating fields can be parametrized in
terms of the elements of the coset space G/ H, where G is
the symmetry group which is broken down to H. The
NLo model is, in fact, completely characterized by the
geometry of the space in which the fields exist. It has
been studied in the general case of an arbitrary Rieman-
nian manifold.® Here we are interested in a coset space
which is compact, homogeneous, but nonsymmetric.
This is to be contrasted with the case of the usual O(N)
NLo model build on the symmetric space O(N)/O(N
—1). The action (1) has an O(3)xO(2) symmetry.
The ground state ®,o,® relevant for canted magnets is

3175



VOLUME 64, NUMBER 26

PHYSICAL REVIEW LETTERS

25 JUNE 1990

obtained when v <0. In this case, ®o- P, =0 and
®% =®d%. The symmetry group H leaving the ground
state invariant is then found to be a O(2) group which
operates on the spatial components of the order parame-
ter and also on the indices 1,2 of the fields. This particu-
lar subgroup of O(3)xO(2) will be denoted by O(2)iag.
The NLo model is thus defined by G/H =0(3)x0(2)/
O(2)giag and has three Goldstone modes, the dynamics of
which is described by the following action:

S=1 dexTr[P(R “'V,R)?1, ()

where R is an element of O(3) and P =diaglg,g1,g.].
This field theory has two coupling constants g, and g,.
The action (2) is right [left] invariant under O(2)
[0O(3)] since it is invariant under the transformation
R— URYV, where U € O(3) and V belongs to the O(2)
group that commutes with the matrix P. As pointed out
above, the order parameter for canted magnets belongs
to O(3). It describes all possible orientations of a triple
of canted spins leaving their relative angles fixed. The
action (2) has been derived microscopically by Dombre
and Read’® for the isotropic triangular antiferromagnet.
They found that g, =0. It is worth pointing out that this
condition is not stable under renormalization and that
one has to study the most general case compatible with
the symmetries of the problem.

Generally speaking, the symmetry-breaking patterns
compatible with an order parameter in O(3), O(3)
XO(p)— O(plaiag, p=1,2,3, can be described by the
action (2) where the diagonal matrix P is chosen to com-
mute with O(p). All these models possess three massless
spin waves with as many different velocities as there are
different coupling constants in the diagonal matrix P.
The renormalization properties of NLo models depend
only on the geometry of the coset space. In particular,
the B function is given up to two loops in terms of the
Riemann and Ricci tensors of the manifold G/ H viewed
as a metric space.® Computational details will be given
in a forthcoming publication.'® We have obtained the
complete two-loop recursion relations for the general
coupling matrix P of the model (2). In what follows, we
shall discuss the case P =diaglg,,g,,g2]. Since the ex-
pressions are quite lengthy, we quote here simply the
one-loop formulas:

dT/dl=—eT+ + (1+1)?T?,
3)
dn/dl=— 5 n(1+1n)°T,

where n=(g,—g,)/(g1+g>) and T=g,"' is a tempera-

ture scale. Apart from the trivial fixed point 7 =0,
n=0, there is only one fixed point which occurs for
(T*) '=g¥ =g¥, ie., n*=0. We have obtained T* at
two-loop order: T* =4¢—2¢% This fixed point has only
one direction of instability; hence it describes a simple
second-order transition. As is readily seen in Eq. (2),
the line g, =g, has a larger symmetry which is O(3)
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x0(3)/0(3)diag=01(4)/O(3). Since the fixed point is
on this line, this means that it is the Wilson-Fisher N =4
fixed point in D=2+¢. Using the recursion equation
(3), we find 1/v=e+ 3 €% This is exactly the result
found in 2+ ¢ for the O(V)-vector model when N =4, as
expected. We thus find no new fixed point for the
0(3)x0(2)/O(2)ging model but we find the general
phenomenon of increased symmetry at a critical point in
agreement with common belief. More generally, we find
that all O(3)xO(p)/O(plding, p=1,2,3, models are
governed by the O(4) fixed point. This dynamically gen-
erated O(4) symmetry means that in the critical domain
the three Goldstone modes become completely equi-
valent. In particular, the associated spin-wave velocities
are renormalized to a single value. It is a new
phenomenon to find such an O(4) symmetry in a Heisen-
berg system. Note that this is completely different from
the O(4) proposed in the case of XY spins.'!

How can we relate these findings with the previous
studies of the linear theory given by Eq. (1)? In a
D=4 — ¢ calculation, one finds the O(6) fixed point on
the u axis at a distance of order € from the origin. The
operator (d;x®,)? opens a direction of instability as is
expected from the general study of N-component models.
The RG flow will thus drive the transition to first order.
Certainly, the low-temperature expansion which is at the
basis of the NLo model must miss this kind of behavior
since it forgets about exponentially small contributions
from the massive modes. This mismatch between two
and four dimensions is very different from the standard
O(N) case where one can follow smoothly the Wilson-
Fisher fixed point from 4 — ¢ and 2+ ¢ expansions. Such
a phenomenon also happens in the case of o models built
on Grassmannian spaces and used in the field-theoretic
study of localization. '?

Let us now discuss the D=3 physics. The simplest hy-
pothesis is that all the O(3) x0(2)/0(2)4iay models ex-
hibit a first-order transition. However, there is a more
intriguing possibility which is in agreement with the per-
turbative results: These models can undergo a first-order
transition or a second-order O(4) transition according to
their microscopic Hamiltonian. In addition, one expects
to find some systems at the boundary between these two
behaviors. The boundary of the basin of attraction for
the O(4) fixed point is governed by the tricritical point
which is at the origin when D=3. In this scenario, the
systems characterized by the O(3)x0(2)/0(2)gia
breaking can have a first-order transition or a second-
order transition with O(4) exponents or a second-order
transition with tricritical mean-field (TMF) exponents.
Eventually, by tuning parameters it should be possible to
observe O(6) critical behavior. In this scheme, we do
not have to introduce any unknown fixed point, contrary
to Kawamura.'? It is the simplest possibility to account
for second-order transitions in D=3. We can rephrase it
in a more appealing manner: If we consider a definite
model and vary its dimension, in the neighborhood of
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D=2, it will be in the basin of attraction of the O(4)
fixed point. If we increase the dimension, it will cross
the boundary of the basin. For this peculiar nonuniver-
sal D, it has tricritical behavior. Beyond this value, the
transition becomes first order. We therefore think that
the critical behavior of canted-Heisenberg-spin systems
is nonuniversal. This is to be contrasted with the hy-
pothesis of a new universality class for canted magnets.
In what follows, we shall show that our simple hypothesis
is likely to be true.

Let us now discuss results obtained from MC simula-
tions on the STA' and BCT? lattices with Heisenberg
spins. As mentioned above, both models undergo a con-
tinuous transition with critical exponents y=1.1 +0.1,
v=0.55+0.03, 8=0.28%£0.02 and y=1.0x0.1, v
=0.57 = 0.02 for the STA and BCT models, respective-
ly. These exponents are clearly different from those of
the N =4 universality class, namely,'* y=1.47, v=0.74,
a=—0.22, $=0.39. We are thus left with the possibili-
ty that the transition is tricritical (or at least in the very
neighborhood of the tricritical point) with classical ex-
ponents y=1, v=0.5, $=0.25: The MC data support
this hypothesis.

The helical-paramagnetic transition in heavy rare-
earth-metal Tb, Dy, and Ho helimagnets has been stud-
ied extensively during the last decade.'>"2> The lack of
universality in these results does not seem to support the
existence of a new universality class for helimagnets.
We shall show how our simple hypothesis enables us to
understand the experimental data. (i) The B exponents
found for Ho in Ref. 24, $=0.39 +0.03, and for Dy in
Ref. 25, B=0.39+0.02, are close to the O(4) values.
(ii) Tindall and co-workers'>'¢ found for the same ele-
ments a weakly first-order transition. (iii) The values of
the critical exponents found by Gaulin, Hagen, and
Child'” for both Dy, v=0.57%0.05, y=1.05%+0.07,
and Ho, v=0.57+0.04, y=1.14 £ 0.1, agree, within ex-
perimental errors, with those of TMF exponents. The
value of B found for Tb by Dietrich and Als-Nielsen, '®
B=0.25%*0.01, is also TMF.

Altogether, these results support the existence in three
dimensions of a tricritical surface separating, in the
whole parameter space, a first-order region from a basin
of attraction of the O(4) fixed point. Concerning
specific-heat measurements, it has been found that for
Dy, a=-0.2," 2a=0.18,° and «=0.24;%' for Ho,
@=0.27%0.02;?? and for Tb, @=0.20+0.03.2> Apart
from the value a=—0.2, found for Dy, which is con-
sistent with N =4, the other values of a disagree with
both the O(4) and TMF ones, a = —0.22 and a =0.5, re-
spectively. This dispersion may be due to the proximity
of the tricritical surface or a sign that the transition is
weakly first order.

Of course, in a real material there are anisotropies
which make the spins neither completely XY nor Heisen-
berg. So far, our discussion has ignored this fact. We
shall argue that a scheme similar to the Heisenberg case

may also apply in the XY case. Frustrated XY-spin sys-
tems have been shown to possess, in general, a discrete
Z, Ising-like degeneracy in addition to the O(2) one. It
has been argued that, near two dimensions, two transi-
tions associated to Z, and O(2) breaking should occur.?®
The values of the critical temperatures Tz, and Txy are,
of course, nonuniversal. Since the RG analysis predicts
a single first-order phase transition near D=4,%%?7 we
suggest that for a definite model, increasing the dimen-
sion D, the two lines of continuous transitions and the
first-order line meet in some manner at a tricritical point
(tetracritical). The position of this point should depend
on the system under consideration. Results from MC
simulations for both STA and BCT lattices with XY
spins proceed in this sense. A single first-order transition
was found in BCT,? whereas a continuous transition with
exponents y=1.1 £0.1, v=0.53+0.03 occurs in STA.'
These values are close to TMF. Moreover, experiments
on the layered antiferromagnet CsMnBr3, 2%2° where the
spins are believed to be XY-like, show a second-order
phase transition with exponents close to the TMF ones:
y=1.012%£0.08, v=0.5410.03, $=0.21 £0.02 (Ref.
28) and B=0.25+0.01.%° Although the situation is
more complicated for XY spins since more than one tran-
sition is involved, we think that our scheme is qualita-
tively correct. For a given model, we predict that the
phase transitions are either second order with standard
Ising or O(2) universality classes, or first order or even
second order with TMF exponents.

To summarize, our simple hypothesis allows us to shed
light on the critical behavior of helimagnets and related
canted-spin systems. The lack of universality of experi-
mental results on Ho, Dy, and Tb is interpreted as the
consequence of the existence of a tricritical point in the
phase diagram of these systems. The transition can be
either first order or second order with TMF or O(4) ex-
ponents provided the spins are Heisenberg-like. It
remains to investigate the relevant parameters on which
the onset of the first-order regime, as well as the oc-
currence of both O(4) and tricritical transitions, depend.
This can be done by means of MC simulations. In sys-
tems where in-plane anisotropy is believed to be strong
the situation might be more complicated. Even so, we
have proposed a natural generalization of our hypothesis.
Note that in real systems the situation can be complicat-
ed by multicriticality as is the case in CsMnBr3.?%3' It
is quite surprising to find so many experimental results
with TMF exponents since we expect that tricritical be-
havior is obtained by tuning at least one external param-
eter. This seemingly bizarre fact allowed in our scenario
certainly deserves more investigation. In principle, there
is a test which allows one to discriminate between our
hypothesis and the existence of a new universality class:
If one sees TMF-like exponents, since D =3 is the upper
critical dimension for tricritical phenomenon, one should
also see logarithmic corrections to leading scaling behav-
ior.
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