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ac Conductance of a Double-Barrier Resonant Tunneling System under a dc-Bias Voltage
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An analytical path-integral method based on the nonequilibrium Green's function is developed to in-

vestigate the linear response of a double-barrier resonant-tunneling system under a small ac signal which
is superimposed upon a dc bias. When the dc-bias voltage is zero, our calculated ac conductance reduces
back to that of a recent Kubo-formula study. When the system is biased at the negative differential
resistance point, both the real (negative) conductance and imaginary part of admittance are derived.
Comparisons with previous numerical study and experiments are discussed.

PACS numbers: 73.40.6k, 73.40.Ty

Since its conception by Tsu and Esaki and the experi-
mental realization by Sollner et al. , the double-barrier
resonant-tunneling system (DBRTS) has been the focus
of intense experimental and theoretical investiga-
tions. ' On one hand, this is due to its technological
importance. On the other hand, DBRTS provides us
with an ideal prototype system where nonequilibrium
and quantum effects of a small-sized open system may
become significant. The steady-state properties'
of DBRTS are mainly characterized by an I-V curve
shown in Fig. I where a regime of pronounced negative
differential resistance (NDR) appears. Of particular
importance is the time-dependent behavior ' ' ' ' of
such a system. Specifically, the frequency-dependent
response of DBRTS to a small ac signal u(t)-uoe
superimposed upon a dc-bias voltage V needs to be inves-

tigated by a fully time-dependent quantum-statistical
treatment. Very recently, Jacoboni and Price have
presented a study of frequency dependence of resonant-
tunneling conductance' at zero bias V 0 (see point a
in Fig. 1), which is based upon the Kubo current-current
correlation formula. In an earlier work Frensley '

presented a numerical study of the frequency-dependent
admittance Y(Q ) of DBRTS biased in the NDR region
(see point n in Fig. 1). By numerically solving the Liou-
ville equation for the Wigner distribution function, he
was able to calculate both the negative conductance

Vn

Voltage

FIG. l. A typical (qualitative) current-voltage characteris-
tic of DBRTS. a, zero biased; n, biased so that the resonance
level is equal to the conduction-band bottom of the emitter
electrode.

cr(O) [real part of Y(O)] and the imaginary part of the
admittance. While his result for negative conductance is
consistent with experimental data, the imaginary part
of the admittance is 5 orders of magnitude too small to
explain the inductance measured. ' In this Letter we

present the first analytical approach to the ac response of
a DBRTS under a dc-bias voltage. When the bias volt-

age is set to zero our results for the conductance practi-
cally reduce back to the Kubo-formula results of
Jacoboni and Price. ' When the system is biased at
NDR, both the conductance and the imaginary part of
admittance obtained in the present study are consistent
with the main features of the existence experiments.

In order to describe the properties of the DBRTS
which is an open system of quantum size, we employ the
nonequilibrium Green's-function technique with help of
the Feynman path-integral theory. ' As is well known
for numerous systems, ' ' the path-integral theory is the
most elegant way to treat the effect of two electrodes
(reservoirs) upon the quantum-well electronic state. The
nonequilibrium retarded (advanced) Green's function G,
(G, ) describes the spectrum and dissipation of tunneling
electrons; the distribution Green's function G carries
the distribution information. In Ref. 14, we have derived
the nonequilibrium Green's functions for a DBRTS un-

der a given dc-bias voltage V. In the following discus-
sion, we first study the linear response of the nonequili-
brium Green's functions due to a small ac signal voltage
u(t) superimposed on V. Then we shall calculate the in-
duced ac current from which the conductance and the
imaginary part of the admittance will be easily obtained.

A DBRTS can be represented by the following one-
dimensional many-body Hamiltonian ' ' H+H':

H = g et, ak at, + e,c c+g e~ b~ b~

+g(TLkc at, + TLkakc)+g(Tttt, bt, c+ Tttpc bt, ),
k P

H'(t ) =c c [—aeu (t )1 +g b~ b~ [ eu (t )],— (2)
P

with at, (at, ), c (c ), and b~ (b~ ) being, respectively, the
annihilation (creation) operators of electrons (fermions)
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in the left electrode, in the central quantum well, and in

the right electrode. e, =eo —aeV (a is structure depen-
dent, a=0.5 for a symmetrical structure) is the reso-
nance level as aff'ected by the dc bias. ef=k /2m and

e~ p /2m —eV are the single-particle energy of the left
and right electrodes, respectively. The starting point for
the energy level is chosen to be the conduction-band bot-
tom of the left electrode and aeV and eV are, respective-
ly, the potential drops of the resonance level and the
conduction-band bottom of the right electrode caused by
the bias V. (Actually, the choice of energy starting point
is arbitrary, e g. , it can also be chosen as the
conduction-band bottom of the right electrode or the res-
onance level, but the physical result remains invariant. )
The fourth and the fifth terms of Eq. (1) describe the
coupling between quantum-well electrons and the two
reservoirs. The tunneling matrices TLk and Ttt~ depend
on the barrier profile including effect of the bias V.
H'(t) is the perturbation due to the ac signal u(t) which
is superimposed upon the bias V.

Since the electrode electrons respond to an applied
field much faster than the quantum-well electrons, they
are generally treated as reservoirs. Thus the density ma-
trix for the DBRTS can be written as follows:

p = exp pg—(et pL )—ak ak p.
k

xexp —pg (ep~ ptr )bpbp— (3)

where 1/p is the temperature of the system. The left-
and right-electrode systems are separate in their own

equilibrium states with chemical potentials pL and pR,
respectively ([[rL

—
[[rR =e[V+ u (t)] ). The central quan-

tum-well electrons are in a nonequilibrium state with the
density matrix p„which still needs to be determined by
their coupling to the two reservoirs and to the applied
electric field. In the practical calculation of the present
problem, the path-integral method not only enables us to
treat the tunneling coupling nonperturbatively, which is

essential to the resonant phenomenon, it also allows us to
work out analytically the statistical average with a non-
equilibrium density matrix as shown in Eq. (3) in a
tractable fashion. Moreover, the two density matrices
for the two electrode subsystems (with different chemical
potentials) can be incorporated into the eff'ective-action
functional by replacing the free propagators of the lead
subsystems with their thermocounterparts. ' '

The nonequilibrium steady-state solution of this tun-
neling problem without the ac signal u(t) has been
presented in Ref. 14. The retarded and advanced
Green's functions for the central quantum-well electrons
were found to be

G(,)( co) =[co —e„+(—1)iy(a))] (4)

The distribution Green's function G (t [
—t2)

=i(c (t2)e(t [)) is given by

G '(a)) =F(co)[G, (co) —G.(co)],

where F(co) is the nonequilibrium distribution function
of tunneling electrons,

F(co) = [yL (co)ft. (co) + ytt (co)fry (co)]/y(co), (6)

with y(co) =yL(co)+yR(co) being the resonance-level
broadening due to the tunneling coupling: yL(co)

+k I TLk I'rr~(co —
ek ) and ytr (co) =&P

I Tttt) I'rr~(co
—

e~ ). fL(co) and fR(co) are the Fermi-Dirac distribu-
tion functions of the two electrode subsystems with
chemical potentials [uc and [[tR. When a small ac signal
u(t) is applied, the system will have a linear response
with respect to the above-described nonequilibrium
steady state.

In the presence of a time-dependent field, the electric
current flowing into the quantum well Iz(t) = —ie([H,
pkak (t)ak(t)]-) is not equal to that flowing out of the
well IR(t) =ie([H, + b~p(t)b (tp)] —) and the accumula-
tion of electrons in the well occurs. The terminal current

t

in accordance with the Ramo-Shockley theorem' ' ' is
given by I = (IL+IR)/2:

l(t) = ——g[Tttt (t)at(t) —Tttat (t)t(t)[+g[Ttttbt (t)t(t) —Ttttt (t)bt(t)[) .
2 k P

(7)

In the path-integral formalism, ' ' quantum-statistical average can be expressed as' '

(( )) =Tr[p( )] = [dak][dak] [db ][db ] [dc ][dc]( )exp r dt[L(t)'—H'(t)]

where

I (t) =gak (t)i c)tak(t)+gb~ (t)i B,b~(t)+c (t)i (1,c(t) —H(t)
k P

is the Lagrangian of the total system without ac perturbation H' and f~dt =f+it++ f+ -dt is integration along
the closed time path. ' ' In order to calculate the ac current i(t) induced by the small signal u(t), we expand the func-
tional integral in Eq. (7) as defined by Eq. (8) to the linear order in H' [thus linear in u(t)]. Ther[ it is straightforward
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to obtain the following linear-response result for i (t),
~ fQ

i(t) = —— [dal, ][dai, ] [db~][dbl, ] [dc ][dc](—i) dt' g[Tlic (t)al, (t) —TLI ak(t)c(t)]

+ g[TRpbp (r)c(r) —Tgpc'(r)bp(r)]
P

x H'(t')exp i dt L(t) (10)

Carrying out the path integrations in Eq. (10) enables us to find the desired admittance Y(n) as a function of frequen-
cy n: i(n) =Y(n)u(n), which can be expressed in terms of the nonequilibrium steady-state Green's functions. The
detailed calculation and the general expression for Y(n) are rather lengthy and shall be presented in a later publica-
tion. However, when the temperature is zero and the system is biased at some special points (for example, points a and
n in Fig. 1), the expressions for the conductance cr(n) =Re Y(n) and for the imaginary part of the admittance may be-
come rather simple. For instance, with the temperature I/P =0, the dc-bias V=O (point a in Fig. 1) and for a system
whose resonance level is equal to the Fermi level of the two electrodes, i.e., e, =pL =pR, the conductance and the imag-
inary part of the admittance can be shown to reduce to the following compact forms:

e(n)
i (0)i

(16yL yR + n ')y', n (yL —
yR ) 'y' n '

tan ' —+
2 2

ln 1+
4yLyR«'+4y') n, y, 4yLyR«'+4y'), y',

Im Y(n)
I (0)i

(16yi. yR+n )y'
ln 1+

g yL yR«'+4y') n, y',
(yL —yR)'y', n

tan
2yL yR (n '+ 4y')

(12)

In Eqs. (11) and (12) and in the following, y=y(e, ) and yiiR&=yiiRi(e, ). The numerical results for Eqs. (11) and
(12) are shown in Fig. 2. There the solid curve, which corresponds to the frequency-dependent conductance [Eq. (11)],
coincides exactly with that of a Kubo-formula study. ' In response to an applied ac voltage, the electrons tunnel into
the center well from one electrode and tunnel out of it into the other electrode. This response decreases monotonically
as shown in Fig. 2 with the increasing frequency. The characteristic frequency for this behavior is given by the
resonance-level broadening Q0=2y. When n ) no, tunneling electrons will not be able to follow the applied field and
the tunneling current vanishes.

Also at zero temperature, when the DBRTS is biased at V„(point n in Fig. 1) so that the resonance level is equal to
the conduction-band bottom, i e , e„=.c. 1, -0=0, the negative conductance cr(n) and imaginary part of the admittance
Im Y(n) are derived to have the following expressions:

with

Im Y(n)
io(0) i

y+4 y+yR y, ,
n' gy i n

n + + tan
4j'R 2~ yR 4)R yR

~(n) yR+4(y+ yR ~, , n gy, ,
n'

4yR n y 8yR y'

tan
y+& y+yR) y -i n + 1n 1+

4XR ~ XR 8 yR yR

y +4(y+y ) y, n' gy, n
ln 1+ + tan

4yR 2Q y 4yR y

(13)

(14)

2yR yL(y+ yR)

n'+(y+ y, )'
It is easy to check that o and Im Y in Eqs. (13) and (14)
as well as in Eqs. (11) and (12) are related by the Hil-
bert transform (Kramers-Kronig relation). For a
symmetrical DBRTS, one has yL =yp at V=o. Howev-
er, yR may become much larger than yL when a dc bias

is applied. In Fig. 3 we plot the conductance and imagi-
nary part of the admittance as functions of frequency 0
for such a symmetrical structure. The diA'erential con-
ductance (negative) cr(n) rolls off' with a characteristic
frequency given by the width of resonance level Ao=y
+yR and continues to be significantly negative until
n —several no. (For example, for a symmetrical struc-
ture with parameters ' barrier width 50 A, well width
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FIG. 2. Frequency-dependent conductance and imaginary
part of admittance of DBRTS with zero bias. The system is

symmetrical so that yL yR 0.5y.

Frequency (Qly)

FIG. 3. Frequency-dependent conductance and imaginary
part of admittance of DBRTS biased at NDR (V V„sothat

el, -o 0). The system is symmetrical and it becomes very
asymmetrical when biased: yL 0.001 y and y& 0.999'.

50 A, and barrier height 0.23 eV, Qo is around 10'
sec '.) This behavior agrees with a previous numerical
investigation'3 and is consistent with the main feature of
experiments (e.g., Refs. 2 and 3). The imaginary part of
the admittance is shown as the dashed curve in Fig. 3,
which matches with the experimental results ' as far as
its magnitude is concerned.

In conclusion, we have presented in this Letter the first
analytical investigation of the frequency-dependent con-
ductance and imaginary part of admittance of a DBRTS
with zero bias and biased at NDR point. Our approach
to this problem is based upon the Feynman path-integral
theory and the nonequilibrium Green's-function method.
It not only produces the frequency dependences of the
conductances in agreement with previous numerical stud-
ies' ' and consistent with existent experiments, it
also consistently yields the imaginary part of the admit-
tance which has not been successfully studied previously.
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