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Partition-Function Zeros and the SU(3) Deconfining Phase Transition
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Using new methods to analyze Monte Carlo data, we have calculated the leading partition-function

zero for SU(3) lattice gauge theory on various L,L' lattices. For L, 4 lattices we find in the range

L -4-16 the scaling behavior of a second-order transition with v-0.468(6). However, for larger lat-

tices (L 14-24), the scaling behavior is consistent with a first-order transition: v-0.35(2). The first-

order nature of the transition is further substantiated by the fact that the finite-size scaling analysis of
the specific heat yields a nonvanishing infinite-volume latent heat.

PACS numbers: 11.15.Ha, 12.38.6c

If the finite-temperature phase transition between the
hadronic and "plasma" phases of quantum chromo-
dynamics (QCD) is first order, then the effects of this
transition may be observable in heavy-ion collisions,

cosmology, and astrophysics. Because of the nonpertur-
bative character of the problem, numerical lattice simu-

lations are the only systetnatic means to study it. In the
limit of QCD where light quarks do not take part in the

dynamics, the deconfining transition of the pure SU(3)
theory had long been believed to be first order. Recently,
criticism from the APE group' has shed some doubt on

this belief. It now appears that the task of inferring the
order of the deconfining transition from simulations on
finite lattices is much more subtle than previously ex-
pected; see Ref. 2 for a review. Here we shed additional
light on the issue by calculating the leading partition-
function zeros for a number of L,L lattices up to
4x 24 . Basically, this is achieved by following the ap-
proach of Refs. 3-5. However, reflecting the continuous
nature of the SU(3) action density, we found it suitable
to strictly avoid any use of histogramming. Essentially,
this is achieved by keeping measurements (four double-
precision numbers) after every sweep through the lattice,
in this way filling up approximately a gigabyte disk.
Subsequently, the measurements are analyzed and re-

weighting is done to construct the P dependence in ap-
propriate small neighborhoods U(PMC) around the simu-

lation values PMC. A number of technical details will be
reported elsewhere. In this Letter we concentrate on
the physics results.

Table I gives an overview of our most important final

data. Each data point relies on at least 120000 Monte
Carlo (MC) sweeps and measurements. Exceptions are
the L=20 lattices, where at PMC=5. 690 and 5.691 we

have 240000 sweeps and the two I. =24 lattices where
we have 180000 sweeps in each case. An additional
10000 to 30000 sweeps were discarded for thermaliza-
tion at the beginning of each run. For the MC updating
we use the code of Ref. 7. The third and fourth columns
of Table I collect our estimates for the real and imagi-

nary parts of the partition-function zero closest to the
real axis. (For the L=4 lattice it is not the zero closest

TABLE I. Overview of L, 4 data.

L, xL PMc pO &max(Sp ) Pmax

4x4
4x43
4x4'

5.570 5.611(9) 0.204(12)
5.610 5.614(11) 0.209(13)
5.640 5.607(6) 0.185(6)

2.699(53) 5.443
None
None

4x6'
4x6'
4x63
4x6'

5.640 5.654(9)
s.64s s.6s6(s)
5.660 5.642(7)
5.690 5.645(8)

Noise 0.591(10) 5.6390
0.0757(64) 0.619(22) 5.6132
0.0784(47) None
0.0801(80) None

4 x 8' 5.670 5.6747(23) 0.0466(27) 0.259(7)
4x8' 5.693 5.6791(33) 0.0498(42) 0.249(7)

5.6705
5.6772

4x10' 5.680 5.6889(14) 0.0301(18)
4 x 10' 5.693 5.6864(55) 0.0280(81)

0.1407(53) 5.6878
0.1350(39) 5.6839

4 x 12' 5.681 5.6934(17) Bias
4 x 12 5.691 5.6896(17) 0.0203(7)

0.0923(55) 5.6908
0.0952(28) 5.6890

4 x 14 5.682 5.6886(18) 0.0143(9)
4 x 14 5.691 5.6922(13) 0.0138(7)

0.0651(30) 5.6882
0.0713(35) 5.6924

4 x 16' 5.683 5.6904(16) 0.0101(10) 0.0492(32) 5.6904
4x16' 5.691 5.6918(10) 0.0101(6) 0.0529(26) 5.6923
4x16' 5.692 5.6917(10) 0.0096(5) 0.0547(23) 5.6917

4x20' 5.690 5.6917(6) 0.00554(22) 0.0386(17) 5.6916
4x203 5.691 5.6915(6) 0.00527(17) 0.0399(16) 5.6916
4x20' 5.692 5.6929(7) 0.00531(28) 0.0386(22) 5.6931

4x24' 5.691 5.6931(7) 0.0027(2)
4x24' 5.693 5.6913(9) 0.0032(4)

0.0404(70) 5.6932
0.0306(25) 5.6911

to the real axis but the one selected by extrapolation
from the lattices with larger spatial volume. ) The fifth
column gives the maximum for the variance of the aver-
age plaquette action,

o' (Sp) (Sp) —(Sp) with Sp —,
' Tr(Up),

searched for in the neighborhood of PMC where reweight-
ing is valid. The last column gives (without its error) the
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I u,o I
-L (2)

(The real parts are too noisy to be useful for anything
else but an estimate of the infinite-volume critical point

P, . ) If the transition is first order, then we should find
v- I/d-I/3. In Table II we collect the results of fits by
Eq. (2) with varying ranges for L For each. fit the good-
ness of fit Q is monitored. For normally distributed
data with known variances and under the assumption
that the fit hypothesis is true, Q is uniformly distributed
in the range 0 & Q & 1. Clearly the L =4-20 and 4-24
fits have unacceptably small Q's whereas all other fits are
acceptable. In particular, it is remarkable that the entire
range L 4-16 allows a consistent fit with v 0.468(6)
and'that direct correlation length measurements for lat-
tices in the range L 6-12 give v 0.473(19) with a
still admissible Q 0.09. Putting these two lines of re-
sults together, the illusion of a second-order transition is
almost perfect. However, the L 20 results destroy the
consistency of the fit and one has to conclude that true
asymptotic behavior is only found for surprisingly large
lattices. Investigating the consistency of fits for large
lattices, one comes to the conclusion that the preferable

corresponding P,„value. In the case that the maximum
is found on the boundary of U(PMc) "none" is entered in

the fifth column. All our error are jackknife estimates;
our estimators are corrected for bias by a "double-
jackknife" method. Results from simulations at variant

PMc values are found to agree in a satisfactory way. It is

remarkable that the only knowledge required for the re-
sults of Table I are the S~ distribution functions from
the various MC runs, i.e., one number per measurement.
In addition, we have measured the spacelike and timelike
plaquette actions separately, as well as the real and
imaginary parts of the Polyakov-loop expectation values.
Results for these quantities, which seem to be less novel,
will be reported in Ref. 6. The rest of this paper is de-
voted to the finite-size scaling analysis of the data
presented in Table I.

To investigate the scaling behavior of the zero which is
closest to the real P axis we follow the convention of
Refs. 3 and 5 and introduce the variable u =e P, al-

though complex Po values could as well be used directly.
For large L the imaginary part of the corresponding u

zero scales like

breakpoint (with respect to Q) is already at L =14. Fig-
ure 1 gives a visual impression of the fits for L =4-14,
for L =14-24, and for all L. Consequently, our final
asymptotic large-L results is

v =0.35+' 0.02 from L = 14-24 with Q =0.26 . (3)

As a test for the correctness as well as for the efficiency
of our method we also simulated 2xL3 lattices with
L =6, 8, 10, and 12 (120000 sweeps and measurements
plus 10000 thermalization sweeps per data point). This
calculation was completed in a few days; we obtained
v=0.331(5) with Q 0.18. Thus, with little additional
effort we confirm the result of Karliner, Sharpe, and

Tang, ' who report v=0.331(6) from their more compli-
cated constrained Monte Carlo calculation of partition-
function zeros. It is amazing that for L, =2 lattices the
v estimate by fitting (2) is consistent with a first-order
transition from the smallest volumes on, quite a contrast
as compared to the L, 4 lattices. A similar contrast
was observed in a recent study of the surface tension in

the deconfinement transition. "
A quantity which is easily calculated from the S~ dis-

tribution function is the reduced second moment (or
variance) cr (Sp). Frequently the fourth moment is in-

voked to distinguish a first- from a second-order transi-
tion. However, in Ref. 12 we observed that in the
present case the fourth moment follows by the Gaussian
relationship from the reduced second moment. (This re-
lation continues to hold for the new L =24 lattices, al-
though in this case the Kolmogorov tests' rule out that
the distributions themselves are Gaussian. ) Therefore, it
is more straightforward to carry out a direct finite-size
scaling analysis of the reduced second moment (1) or,
equivalently, of the specific heat. The large-L behavior

Asymptotic result:
t. = 035 (2)

-io
+L

TABLE II. Fits of i u, (L) i .

L range

4-14
4-16
4-20
4-24

14-24
16-24

0.475 (7)
0.468(6)
0.451(5)
0.445(4)
0.35(2)
0.34(2)

0.62
0.19

8 9x10
6 7x10

0.26
0.14

Ln(L)
I F;ts for ln i „,, i

= —(I/v) ln(I ). The dashed line fits

(g 6 7x 10 "). The first solid line corresponds «
the range L 4-14 and the second, relevant for the asymptotic
estimate of v, to the range L =14-24.
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1S

a2(S ) a|La/v —d+a2L d
p 1 (4a)

0.000025
&2(S ) = a +

p 1

For a first-order phase transition, a/v =d and

rr (Sp) =ai+a2L (4b)

0.000020

(y2(S

0.000015

a1 —— 2 45 (10) + 10

a2 = 117 (03) + 10

where ai is then related to the latent AS& of the average
plaquette action S~ by

0.000010 Q=066

~S, =2Ja, . (s) 0.000005

It is rather surprising that this relationship has not been
exploited in previous investigations of the SU(3) decon-
fining transition. In Table III we collect the results of
fits by Eq. (4b) with varying ranges for L From. L =6
on, fits over the entire range of our lattices are con-
sistent. The L =8-24 fit is depicted in Fig. 2 and gives
our final estimate of the latent heat,

0,000000
0 5000 10000 15000

Volume L

FIG. 2. Finite-size scaling estimate of the latent heat. The
solid curve shows the fit using Eq. (4a), which leads to the
displayed values of ai, a2, and g. The dashed curve shows the
fit using (4b) with v-0.468.

gS~ =(3.13 ~0.06) x10 (6)

TABLE III. Fits of cr'(S~)(L)

L range 10'a
1 10 a2

from L =8-24 with Q =0.66 .

In a frequently used notation, this translates to h(C—3P)/T =4.02(9) in excellent agreement with values
reported in Ref. 13 and well consistent with Ref. 14.
Here hC is the latent heat and 8 the pressure (continu-
ous across the phase transition). Along the same lines
we have also investigated h(8+8) which corresponds
essentially to the difference of spacelike and timelike pla-
quettes, but in this case the signal barely allows us to
determine the maximum of the variance and details are
postponed to Ref. 6.

How do the approaches, zeros and specific heat, go to-
gether for small lattices~ Let us assume that the hyper-
scaling relation ' a =2 —d v is valid. Then v determines
a/v in Eq. (4a). Using the result v=0.468(6) from the
range L =4-16 instead of v=1/d as input, the resulting
fit is already inconsistent for the range L =6-10:
Q=3.6x10 ' . The fit for our whole L range is illus-
trated by the dashed curve in Fig. 2. In this way the
small lattices tell us that the asymptotic behavior is not
yet reached. Even more remarkably, assuming (4b) we
learn from Table III that already rather small lattices
(L =4-16) give a reasonably good estimate of the
infinite-volume latent heat. On the other hand, for
L, =2 the two criteria give consistent answers already

from L =6 on: Using v=0.331 in Eq. (4a) gives an ex-
cellent fit to our L, -2 data for o (S~) (Q 0.61).

Putting both approaches together and assuming the
validity of the hyperscaling relation we seem to arrive at
a rather powerful method to distinguish numerically a
first-order phase transition from a second-order one. If
the two criteria give confiicting messages (as for L, =4 in
the range L 4-16), one obviously needs larger systems
to settle the question of the order and the transition be-
longs in the twilight zone where the numerical methods
do not allow us to distinguish a sufficiently strong
second-order transition from a sufficiently weak first-
order transition.

A nice feature of the approach proposed here that it
does not rely on an order parameter but entirely on an
analysis of the distribution function of the action. This
should make the approach particularly suitable to full
QCD, where the Polyakov loop ceases to be an order pa-
rameter.

The Monte Carlo data were produced on Florida State
University's (FSU) ETA ' s. In addition, this work
would hardly have been possible without support by the
FSU high-energy physics group through use of their
gigabyte disks. In particular, we are indebted to Dennis
Duke and Harvey Goldman. This research project was
partially funded by the Department of Energy under
Contracts No. DE-F605-87ER40319 and No. DE-
FC05-85ER2500. N. A. is supported by the Conselho
Nacional de Desenvolvimento Cientifico e Technologico,
Brazil.

4-24
6-24
8-24

10-24
8-16

10-14

2.09(9)
2.3S(9)
2.45 (10)
2.47(12)
2.50(17)
2.S9(27)

1.29(2)
1.20(2)
1.17(3)
1.1S(4)
1.16(3)
1.1S(4)

10
—38

0.18
0.66
0.56
0.41
0.26
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