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Lattice Gas as a Model of 1/f Noise
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Direct numerical measurement of the power spectrum of the number of particles on the lattice demon-
strates in an example of probably broad physical relevance that 1/f behavior can arise due to self-
organized criticality. DiA'erent versions of the model are studied in order to look for universality.

PACS numbers: 05.40.+j, 02.90.+p, 05.70.-a, 74.40.+k

The widespread occurrence of signals exhibiting power
spectra with behavior over many frequency decades de-
scribed by a power law with an exponent close to —

1

suggests that an underlying explanation might exist.
The concept of self-organized criticality, recently intro-
duced by Bak, Tang, and Wiesenfeld, ' is an attempt to
find such a general principle. The idea is that the 1/f-
like power spectra occur when a many-body system or-
ganizes itself in a dynamical state which is critical in the
sense that no characteristic length or time scale exist.
The ubiquity of the 1/f phenomena follows once it has
been established that the self-organized critical state is a
general property of most dissipative many-body systems.

In principle, molecular-dynamics simulations should

be able to shed some light on these ideas, but since the
issue is the low frequency, i.e., the long-time behavior, it
does not seem possible to overcome the numerical
demands for the large system size of interest. The next
best thing is to study discrete dynamics. Bak, Tang, and
Wiesenfeld' used a cellular automaton with a threshold.
New experiments by Jaeger, Liu, and Nagel have made
the physical applicability of this cellular-automaton
model somewhat unclear. Furthermore, recent numeri-
cal analysis of the power spectra of the model shows
that the model behaves as 1/f rather than 1/f~ with

P —1

In this Letter we present a lattice-gas model with a
simple qualitative physical connection to transport phe-
nomena such as flux flow in type-II superconductors or
highway traffic which are known to contain 1/f power
spectra. The physical quantity which in our lattice gas
show 1/f behavior is the total number of particles on the

lattice, N(t). Particles can enter the system randomly at
the left edge of the lattice. While on the lattice the par-
ticles interact with neighbors according to a determinis-
tic equation of motion. The interaction between the par-
ticles makes them perform a random walk. Particles
leave the system when they return to the left edge or
reach the right edge of the lattice.

The power spectra of N(t) are found to behave as
S(f)—1/f p with P-1.5 in one dimension and P-1.2 in
two dimensions. The scaling behavior of the power spec-
tra are connected with the power-law behavior of the dis-
tribution of lifetimes, ' D(T) —1/T' (T being the time
the particles spend on the lattice), where a and P ap-
proximately fulfill a+P =3.

The model Our latt.i—ce-gas model was inspired by
the experiment on flux flow in thin-film type-II supercon-
ductors performed by Yeh and Kao. We want to model
particles which follow diffusive dynamics. The equation
of motion we have in mind is of the form rtv =F, where rt

is a friction coefficient, v is the velocity, and F is the to-
tal force on the particle. The model is defined as follows:
Consider a lattice of N„xN» sites. Each site can contain
one or zero particles. Particles on neighbor sites repel
each other with a central force of unit strength. Let f~,„
denote the total force on a particle due to its neighbor
particles. An additional driving force, fq„can be applied
to all the particles. Let F be the total force on a particle,
i.e., F = f~,,+ fq„and define the vector n as

n =[F„/F] and n, =[F»/F], .

where [t] is the integer nearest to t. A particle on site ro
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FIG. 1. Time sequence of the number of particles on the 1at-
tice for a system of size 50& 6, with NN interaction, the densi-
ty of pinning sites equal to —, , and no driving force applied.
(b) A blow up of a section of (a).
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FIG. 2. Power spectra of systems with NNN interaction,
the density of pinning sites equal to 3, and no driving force ap-
plied. Three different system sizes are shown: dotted line cor-
responds to 20&6; dashed line to 50X6; and dash-dotted line to
100X6. The data have been multiplied by factors of 1, 4, and
8—going from bottom to top —in order to keep the curves
apart. The straight line is 1/f '

is moved to site r~ given by

rt =ro+a (2)

if the new site r~ is unoccupied; otherwise, the particle is
left on site ro. The whole lattice is simultaneously updat-
ed. In case two or more particles want to move into the
same new site, the one with the largest force wins. The
sites (O,y) at the left edge of the lattice are unoccupied
with fixed particles. This rim of particles tends to push
particles on the sites (l,y) into the lattice. In each time
step particles in the column (l,y) are first removed and
then new particles are introduced on the sites (l,y) with
a probability p per site. Particles can freely leave the
system over the right rim. The two-dimensional systems
are made periodic in the y direction. We have con-
sidered systems of size %„=100, 500, 1000, 2000, and
5000 in one dimension. In two dimensions we used N,
= 10, 20, 50, 100, and 250 and N~ =6 or 18, for the
study of temporal features of the system, as well as sys-
tems of sizes 30 X 30, 60 X 60, and 128 x 128 for the spa-
tial characterization discussed below.

Furthermore, we can choose a subset of sites which we
denote as pinning centers. If a particle sits on such a
site, it will only be allowed to move oA the site when

A~F & 1, where A~ is a number characterizing the
strength of- the pinning.

The particle density and the mean velocity depend on
the values of p, A~, and the density of pinning sites n~.
However, the qualitative features and the critical ex-
ponents do not depend on the specific values of these pa-
rameters. All simulations presented here are run with

p =0.2, Ap =1 or 0.9, and n~ =0 or —,
' .

The simulations are started out with some con-
figuration of particles on the lattice (empty lattice, every

second site occupied, random distribution of particles,
etc.). After a certain transient time the system enters a
statistically stationary state which is independent of the
initial configuration. The total number of particles N(t)
is then recorded as a function of time. Figure 1 shows a
typical measurement of N(t) in the stationary state. In
Fig. 1(b) we show a magnification of a section of Fig.
1(a) in order to exhibit the self-similar structure of the
N(t) curve.

Results. —The power spectrum is obtained by direct
Fourier transformation of N(t) In order . to achieve
sufficient statistics many power spectra of successive
time sequences are averaged. During the simulation we
measure the time the particles stay on the lattice from
which we construct the lifetime distribution D(T). Fig-
ures 2 and 3 show typical measured spectra and lifetime
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FIG. 3. Lifetime distributions corresponding to the power

spectra shown in Fig. 2. The same signatures and multiplica-
tions are used as in Fig. 2. The straight line is 1/T' '.

3104



VOLUME 64, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JUNE 1990

distributions. Results for different system sizes are
shown. The size dependence is discussed below.

We have studied four different versions of the model in

order to address the question to what extent universality
exists as in ordinary thermodynamical critical phenome-
na: nearest-neighbor (NN) interaction with no driving
force and no pinning centers in one dimension, and
nearest- and next-nearest-neighbor (NNN) interactions
with or without driving force and pinning centers. The
results are summarized in Table I. The a and P ex-
ponents depend on the dimension of the system. Within
the numerical accuracy they do not depend on the num-
ber of neighbor interactions nor does the introduction of
pinning sites influence the value of the exponents. How-
ever, a small applied driving force makes the exponents
change.

Some remarks about the case of a finite driving force
are appropriate. For forces of strength fd, &f„the driv-

ing force has no effect on the depinning of particles(f„—I+ I/&t, for A~=1). The only effect of the
driving force is to make particles with no neighbors move
to the right; these particles do not move when fd, 0.
(This is the reason for the change in the cr exponent, see
below. ) The a and P exponents for 0&fd, &f,„are
given in Table I. As fd, becomes larger than f„ the
force starts to aid the depinning of pinned particles and
to change the direction of motion of particles interacting
with neighboring particles. When fd, is the dominating
force the particles are pulled over the lattice by moving
one step to the right in each time step; i.e., the speed is

equal to 1. The distribution of lifetimes becomes a delta
function, D(T) =8(T N„), and the po—wer spectrum be-
comes proportional to sin (zN, f)/f . This behavior is
consistent with the experiment by Yeh and Kao, who
found a crossover to a Lorentzian-like form well above
threshold.

A random linear superposition of signals with a life-
time distribution D(T) tx I/T' leads to a power spec-
trum S(f) rr-1/f ' (when a 6 [1,3]). Table I shows
that this relation is satisfied approximately for the a and

P exponents of the present model. Although the record-
ed power spectrum is measured directly on a highly in-

teracting model, the critical state can be characterized

ln[D(T, N„)]
ln(N„/N )

ln(T/ T')
ln(N„/N )

(3)

Figure 4 shows a multifractal scaling plot of the lifetime
distribution in Fig. 3. The values of the fitting parame-
ters T and N are here both equal to 1. Multifractal
scaling has also been observed in other models ' or
self-organized criticality. We shall get back to the value
of rr below, but before that it will be convenient to con-
sider the spatial characteristics of the system.

The system is obviously anisotropic due to the bound-
ary conditions. There is a density gradient along the x
axis. In one dimension the density drops rapidly close to
the x 1 edge. Throughout the rest of the system the
density is almost constant. The density profile is dif-
ferent in two dimensions. For all the cases with fd, =0
the density decreases linearly with constant slope from
x= 1 to x=N„. Application of the driving force in the

by a set of independent lifetimes. Temporal correlations
appear to be of only minor importance. In this way the
model ofl'ers important support to the original ideas of
Bak, Tang, and Wiesenfeld. '

Table I contains an exponent a which we are now go-
ing to discuss. The main part of the straight-line seg-
ment in Fig. 3 comes from particles which manage to
diffuse back to the left input edge of the system. The net
flow in the system is to the right. The center of mass, or
average velocity, along the x axis, (v„), is positive. The
time To=N„/(v„) it takes the center of mass of the par-
ticle system to travel the distance N„across the lattice is
found to scale as TotxN„. When no driving force is ap-
plied rr is equal to 2, i.e., ideal diffusion, whereas a non-
zero fd, changes a to 1. The local peak at long times
(see Fig. 3) is located about To. This suggests that
D(T) should fulfill the following finite-size scaling form:
D(T) T 'F(T/N„'). However, this finite-size scaling
ansatz turns out to be fulfilled only poorly. A much
more satisfying fit is obtained by use of the multifractal
form suggested by Kadanoff et al. ,

TABLE I. Exponents for diff'erent versions of the model.
The a, P, and y exponents are determined with an accuracy of
about 5%. The accuracy of cr is about 2%. The exponents are
defined in the text.

Range of Density of
Dimension interaction pinning sites fd, a P

x

+x
a+ x

Xb+.&+x

tt+x„
+ X

a ~+4
+

NN
NN

NNN
NNN
NNN

0 1.5 1.5 0.6 2
0 1.7 1.1 2.2 2
0 1.5 1.2 2.2 2
0 1.5 1.2 2. 1 2

0.01 1.8 1.3 1.9 1

1

In(T)/In(N„)

FIG. 4. Multifractal scaling plot of D(T) in Fig. 3. System
sizes are as follows: &, 20X 6; +, 50X 6; and x, 100X6.
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FIG. 5. Clusters of energy-dissipating sites in a system with
NN interaction, without pinning sites, and no applied driving
force.

presence of pinning sites changes the density profile. For
fp, )0 the density drop takes place close to the edges
x=1 and x N„whereas the density gradient in the
bulk is small.

The density profile and the o exponent can be dis-
cussed in terms of a diffusion equation. Since the parti-
cles are conserved except at the boundary, the particle
density (averaged along the y direction) n(x) fulfills
dn/dt = —dJ/dx, where J is the particle current. The
updating algorithm suggests that the current has the
form

J= a(dn—/dx) +

hfdf,

n, (4)

For f4, =0 this represents a linearly decreasing density
with a slope which becomes numerically smaller for
finite fz, . From Eqs. (4) and (5) we get

Plp NI Plp+ niJ=a +b fg„
x

for small fq, The edge de. nsities no and nt are deter-
mined by the condition at the boundary and are indepen-
dent of the system size. Since (v„)=J/n, where n is the
average density, we find that (v, ) —1/N, for f&, =0 and
(i. „) is independent of the system size when fq, )0. This

where a and b are coefficients. The static density profile
is readily obtained and expressed in terms of the densi-
ties close to the edges n(G) no and n(N„) nt.

n(x) = no ex p(bf 4,N„/a ) nt —(—no —nt. )exp(be, x/a )
exp(bf 4&N&/a) —I

(5)

explains the behavior of the exponent o.
Let us look at energy dissipation in the model. The

updating algorithm models an overdamped equation of
motion. We can think of energy being dissipated every
time a particle is moved from one site to another. In or-
der to study the spatial distribution of this energy dissi-
pation we mark all the sites from which particles leave at
time step t and mark in addition all the sites these parti-
cles move onto at time E + 1. These are the sites on
which energy has been dissipated during the update from
t to t+1. The sites marked in this way form clusters
containing different numbers S of sites. The distribution
of cluster sizes D(S) follows a power law, D(S)—1/S'.
The exponent y is listed in Table I. Figure 5 shows an
example of the clusters for a system with NN interac-
tion, no pinning sites, and E4, =0.

We have presented a physically reasonable discrete-
time model consisting of particles moving around on a
lattice. At zero or small driving force the model contains
a self-organized critical state in which distribution func-
tions and power spectrum have power-law behavior. The
model offers solid support to the idea that I/f behavior
can arise as a result of self-organized criticality.
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