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Density-Functional Theory of Freezing for Quantum Systems: The Wigner Crystallization
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~e present a density-functional approach to the freezing of quantum systems which emphasizes the
role of the liquid phase. The key ingredient of this theory is the static response function of the homo-

geneous liquid. From this quantity one constructs the diff'erence of the relevant free energy between the
liquid and a given crystalline phase and hence locates the melting curve. As an illustration we study the
Wigner crystallization.

PACS numbers: 64.70.Dv, 05.30.—d, 71.10.+x

Density-functional theory' (DFT) exploits the fact
that a many-particle system can be described through a
suitable thermodynamic potential, which is a functional
of the one-body density and attains its minimum at the
equilibrium density. For a quantum system, it shifts the
emphasis from the complicated many-body wave func-
tion to the much simpler one-body density (the density).
It appears natural, therefore, to use DFT to investigate
the phenomenon of crystallization, which in equilibrium
conditions is characterized by the behavior of the
density —changing from a positionally independent con-
stant to a periodic form at the liquid-to-crystal transi-
tion. Practical implementations of a density-functional
theory of freezing, however, require the ability to con-
struct suitable approximations to the relevant thermo-
dynamic functionals, since these are not known exactly
for interacting particles.

To be specific let us consider the Helrnholtz free ener-

gy F for a system with only one type of particle, whose
density we denote by n(r), the generalization to mul-

ticomponent systems being straightforward. In the pres-
ence of an external potential v,„,(r) acting upon the par-
ticles F can be decomposed into

F[n] Fo[n]+Ft[n]+„drn(r)v, „&(r),

with Fo being the Helmholtz free energy of the nonin-
teracting particles at density n(r). Hence the excess free
energy FI contains effects due to particle-particle in-
teraction and —in the quantum case—to exchange. It is
this functional that is not exactly known and requires ap-
proximations to perform practical calculations. Howev-
er, rather than making an approximation to the whole
FI—as is done in the local-density approximation '
(LDA)—we propose here to approximate the difference
of excess free energy between the inhomogeneous system
and a homogeneous liquid at density nI. This is achieved
by functionally expanding At Ft[n, ] Ft[nt] ar—ound
the liquid in powers of the density difference bn(r)

1

n, (r) —nt between the two phases. In the absence of
an external field,

Jl drptbn(r)+ —,
'

&
Jfdrdr'[ —

Z '(r —r')+go '(r —r')]bn(r)bn(r')+ .

Such an expansion involves as coefficients inverse static
response functions of the liquid phase of all orders, which
arise from the nonideal free energy. In particular, pl
and g are, respectively, the excess chemical potential and
the linear-response function of the liquid, the subscript
zero indicating ideal (i.e., noninteracting particle) quan-
tities. Use of Eqs. (I) and (2) together with the ex-
tremum condition for the appropriate thermodynamic
potential allows the calculation of free-energy differences
between the solid and the liquid, once the properties of
the liquid are known. A nontrivial theory is obtained by
carrying out the expansion of hl up to second order,
which yields all the terms explicitly shown in Eq. (2).
The theory that we have outlined above is the natural ex-
tension to quantum systems of a DFT approach to the
freezing of classical Auids, ' which has been applied
with success to many systems —from neutral and

l
charged hard spheres to Lennard-Jones fluids, the
one-component classical plasma,

' mixtures, ' ' and a
model description of water. '

In this Letter we intend to show that calculations
based upon a density-functional approach such as the
one described above are indeed feasible for quantum sys-
tems. Clearly, the technology involved in the calcula-
tions is quite different from that required for classical
systems, but existing band-structure computer codes
can be easily adapted. As an illustration, we consider
below the freezing of jellium in three dimensions at
T 0, within the second-order theory.

Jellium' is a model system of electrons in a uniform
neutralizing background, whose density no is usually
specified by the parameter r, —= (4nno/3) ' latt —the
signer sphere radius measured in units of Bohr radii.
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Wigner, ' more than fifty years ago, introduced the idea
that electrons could crystallize into a regular lattice un-

der the effect of their mutual Coulomb repulsion. A
wide variety of theoretical estimates was then produced
over the years ' for the coupling strength ' r, at the
phase transition. The best current estimate of the loca-
tion of the Wigner crystallization comes from quantum
Monte Carlo (QMC) simulations of Ceperley and Ald-

er, ' who have established that the freezing into a bcc
lattice takes place at r, =100~20, from a liquid which
is fully spin polarized. Therefore, in the following we

shall restrict our investigation to the freezing of a spin-

polarized electron fluid. We notice that, o~ing to the ri-

gidity of the background and to charge neutrality, the
electronic crystallization is at constant density.

At zero temperature the Helmholtz free energy goes
into the simpler ground-state energy E[n]. Thus, to in-

vestigate the stability of a chosen crystalline phase with

respect to the liquid, one has to construct the difference
in energy of the two phases, hE =E, —EI. By taking ad-
vantage of Eq. (2) and using charge neutrality [i.e.,
fdr bn (r) =0] one readily obtains

p[n ] 5 Nej + —,
'

JI Jl dr dr'[ —g
' (r —r') +gp ' (r —r') ] bn (r)bn(r'), (3)

with Tp denoting the noninteracting particle kinetic en-
ergy, eF being the Fermi energy of the liquid phase, and
N the number of electrons. It is apparent from Eq. (3)
that the nonideal part of the response function of the
liquid plays the role of an effective interaction which
might favor the modulation of the electron density
despite the increase of ideal kinetic energy. To measure
the departure of such an effective interaction from the
bare interparticle potential it is customary to define —in
reciprocal space —a local field factor ' G(q) by

v ff(q) =bn(q)v(q) [1 —G(q)] (5)

However, periodicity implies that

n, (r) np+ g noe'
G~o

(6)

where the G's are reciprocal-lattice vectors (RLV) of the
chosen structure. It follows that the effective potential is
also periodic. Hence, one has to self-consistently solve
Kohn-Sham equations

[ —(ft /2m�)V +v, fr(r)] yk(r) =eklpk(r)

for the Bloch orbitals yk, the density being given by
Zk, occ I Pk(r) I'.

It is instructive to rewrite the energy difference of Eq.
(3) by making use of Eqs. (4)-(6) and of charge neu-
trality. One immediately gets

AE = Tp [n, ] ——', NeF

+ —,
' V g v (G) [1 —G(G)]

~ nG ~',
G~o

(8)

with V the total volume. As we have already noted, the
ideal kinetic-energy difference is always positive and
therefore in the second-order theory the crystalline phase
may become stable if and only if G(G) & 1 for some G
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v(q)[1 —G(q)] = —g '(q)+gp '(q),

with v(q) 4' /q . Imposing the extremum condition
on the approximate energy functional of Eq. (3) is
equivalent to solving a problem of independent electrons
in an effective self-consistent potential whose Fourier
components are explicitly given by

and the contribution from such vectors is dominant in

the potential-energy sum on the right-hand side of Eq.
(8). The coexistence point, characterized by the vanish-

ing of hE, locates the critical r, for crystallization. At
larger r, one should find hE & 0, since the crystal should
be stable, while h,E &0 at smaller r„ the liquid being
stable.

The calculation that we have been outlining requires
the knowledge of the static response function of the
homogeneous electron liquid, whereas to date QMC re-
sults are available only for the static structure. To make
use of this information, in the absence of an exact ex-
pression giving g(q) in terms of S(q), we resort to the
following approximate decoupling scheme, '

G(q) - ——J, , [S(q —k) —I].1 ~ dk kq
n( (2n)' k' (9)

We note that combined with the fluctuation-dissipation
theorem the above relation would yield the so-called
Singwi-Tosi-Land-Sjolander theory. ' ' Though being
one of the simplest of the many approximate theories
proposed to study the electron liquid, this method ap-
parently provides more accurate correlation energies
than other approximations. ' The static local field factor
that one obtains for spin-polarized electrons by making
use of Eq. (9) and of the available QMC data for the
static structure is shown in Fig. 1. It is apparent that,
with increasing r„G(q) develops a peak just before
2qF—exceeding 1 in that region of wave vectors. Here,
qF ——(6n np) ' is the Fermi wave vector for spin-
polarized electrons. Also, for a given value of the re-
duced wave vector q/qF the residual dependence of G(q)
on r, is reasonably smooth, which allows for extrapola-
tion ' at all relevant values of r, .

The calculation of the energy diAerence hE requires,
for a given r„ the solution of Kohn-Sham equations for
the Bloch orbitals y~ of a single fully occupied energy
band since there is one electron per unitary cell and we
are interested in the spin-polarized state. We have per-
formed state-of-the-art, fully converged band-structure
calculations based on the plane-wave expansion of Bloch
orbitals at each of the special points chosen to perform
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FIG 1. The local field factor G(q) for the spin-polarized
electron fluid at increasing values of the coupling strength pa-
rameter r, . In order of increasing peak height the curves refer
to r, 2, 5, 10,20, 50, 100.

FIG. 2. The energy of the bcc (circles) and fcc (stars) elec-
tron crystals relative to that of the polarized electron liquid in

microrydbergs (pRy), around freezing. The lines are only a
guide to the eye.

sums over the Brillouin zone. We have investigated the
stability with respect to the spin-polarized homogeneous
liquid of both bcc and fcc electron crystals. We find that
the bcc crystal becomes stable at r, 102, in excellent
agreement with the QMC value r, 100+'20. We also
find that around freezing there is a competition between
the bcc and the fcc structure, as can be seen in Fig. 2. In
particular, the fcc crystal becomes stable first at r, 97
and remains the stable phase up to r, 108, where the
bcc lattice finally becomes lower in energy.

Thus, our results are in agreement with the findings of
QMC simulations, ' which were concerned only with the
bcc structure. On the other hand, they are not incon-
sistent with calculations based on the harmonic approxi-
mation, which establish that at T 0 the bcc electron
lattice is always stable with respect to the fcc one.
Clearly, such a conclusion is only valid at couplings
~here the harmonic approximation applies, i.e., for
values of r, somewhat larger than the critical value. In
fact, we find that for r, & 108 the bcc is the stable phase.
We should also mention that in our investigation we have
encountered none of the difficulties found in studying the
freezing of classical jellium. ' In fact, in testing the con-
vergence of our calculations, we have included in the
sums of Eqs. (6) and (8) all the stars of RLV below a
given cutoff—to include up to 74 stars. We believe that
the differences between classical and quantum jellium
arise in part from the presence of much less structure in

the local field function G(q), as compared with its classi-
cal counterpart.

According to QMC ' in the crystalline phase near
freezing the quantum particles are well localized around
the lattice sites, with a Lindemann ratio y (rms deviation
about a lattice site divided by the nearest-neighbor dis-
tance) of 0.304-0.02. In the present calculations we es-
timate a slightly larger Lindemann ratio at freezing,

namely, we find for the bcc crystal @=0.34, with the
electrons, however, still well localized.

An analysis of our calculated crystal densities reveals

that for a given r, the Fourier components ng are
well reproduced by a simple Gaussian form, n G

exp( —A ~G~ ). Considering the good localization of
the electrons at freezing, this would suggest that instead
of solving the Kohn-Sham equations for the yg's one
might try an Ansatz in which Bloch sums are construct-
ed from a single Gaussian orbital P per site, P(r )

(2C/x) exp( —Cr ), with C a variational parameter.
This simpler approach, which introduces an additional
approximation, yields results that are not much different
from those presented above. In particular, one finds a
critical r, of 107, y 0.29, and substantial equivalence of
the bcc and fcc structures at freezing. In fact, due to the
variational character of these calculations, we believe
that the Gaussian Ansatz may be valuable to obtain in a
simple manner reasonable estimates of freezing proper-
ties.

For the purpose of comparison we have also performed
LDA band-structure calculations for the electron crystal
and compared the resulting total energy with that of the
liquid, using a very accurate fit ' to the QMC correla-
tion energy of the electron liquid. Not surprisingly we
find that LDA fails substantially here, in that it places
the transition from the polarized liquid to the bcc crystal
at an r, as low as 22.

In the foregoing we have presented a density-
functional theory of freezing for quantum systems, based
on the structural properties of the liquid phase, in which
the quantum nature of particles is fully taken into ac-
count. We should mention that very recently an outline
appeared of an alternative approach to the freezing of
bosonic liquids. Such an approach exploits the path-
integral formalism —rather than band-structure calcula-
tions —to evaluate the relevant free-energy difference be-
tween solid and liquid. Both approaches are based on a
second-order approximation to the nonideal free-energy
functional. Here we have been concerned, for the pur-
pose of illustration, with a system of many ferrnions.
However, our scheme is immediately applicable to bo-
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sons as well. The statistics, in fact, enters the formulas
above only through the specification of the occupation
numbers of the single-particle Bloch orbitals of Eq. (7).
The finite-temperature situation is not much more corn-
plicated than the zero-temperature case, if reliable
response functions are available. The extremum condi-
tion for the grand potential 0 yields equations that read
essentially identical to Eqs. (4)-(7) above, provided that
the density is constructed using finite-temperature occu-
pation numbers, which must be used also to construct
ideal kinetic energies and ideal entropies. From these
one readily calculates the diA'erence of grand potential
between the two phases, 6,0, which is zero on the freez-
ing (melting) curve. Applications of the present scheme
to (i) bosons and (ii) suitable extensions of the scheme to
include terms beyond the quadratic ones in the expan-
sion of Eq. (2) will be investigated elsewhere.
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