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Dipole and Monopole Vortices in Nonlinear Drift Waves
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The problems of existence and stability of drift vortices in plasmas with density and temperature inho-
mogeneities are studied analytically and numerically. It is shown that basically two space scales are in-
volved: (i) the ion Larmor radius at the electron temperature, where dipolar vortices exist, and (ii) a
longer space scale on which monopolar vortices are possible. The latter are shown to survive finite dis-
turbances. A Liapunov functional for structural stability is presented. The analytical predictions are
verified by a 2D numerical simulation.

PACS numbers: 52.35.Kt, 52.35.Mw, 52.35.Ra

The fundamental work of Hasegawa and Mima' on dimensional Hasegawa-Mima-type equations in order to
the existence and nonlinear dynamics of dipolar drift test the stability predictions. The advantages and disad-
vortices in plasmas with density inhomogeneities stimu- vantages of various procedures are discussed and numeri-
lated many investigations on spatially coherent nonlinear cal results are presented.
structures in drift-wave turbulence.? Various authors®™ Let us exemplify these ideas for a simple model; more
emphasized that solitary vortices could play an impor- complicated generalizations are possible along the lines
tant role besides the mode-mode-interaction processes.”™’ outlined below. We assume a uniform external magnetic
Meanwhile, there exist experimental verifications®® of field BZ, write the ion density (n,) continuity equation in
some of the predictions which also reveal a great similar- the simplest form,
ity to astrophysical observations.'® Also, in numerics,? 8, +v,, -Vl +V-v, =0, )

dipolar as well as monopolar structures are seen. With

NP and assume quasineutrality and Boltzmann-distributed
respect to the latter, Petviashivili'' developed a model q y

which later on was criticized by some authors.'>'} Thus clectrons,
the situation is as follows: For dipolar drift vortices in n; = n, = noexplee/kpT,) . (2)
plasmas with density inhomogeneity, the Hasegawa- Here, ¢ is the electrostatic potential and T, is the elec-
Mima equation' is the well-accepted correct model; the tron temperature. For the 2D ion velocity we use the
potential varies on the characteristic length scale p;, the drift approximation
ion Larmor radius at the electron temperature. Howev-
er, the problem of temperature-gradient model equations vie=vexp~ (¢/QiB) B +vexp VIVe, @)
is still open. In this paper we want to contribute to a where Q, =eB/cm; and vexg=1(c/B)Zx V.
resolution of the controversial discussion in the litera- A straightforward combination of these equations
ture'!'"'* by applying a multiple-scale analysis. The first leads to a single, however, complicated, equation for ¢
main outcome of this discussion will be that the existence where, of course, the background density n¢ and the elec-
of dipolar or monopolar vortices, respectively, depends tron temperature are space dependent, e.g., no=no(x)
on the length scales under consideration: Dipolar vor- and T, =T,(x). In order to simplify Eqs. (1)-(3) to a
tices exist on the p, scale, whereas the characteristic tractable model equation it is most appropriate to intro-
length of the possible monopolar vortices is of the order duce within a multiple-scale analysis the variables
p./€, where € is a smallness parameter to be discussed x,=€'x, nj=€en, t,=€'t, for i=0 and e< 1. Here, we
later. The second result of our investigation was stimu- moved into the frame n=yp — ut.
lated by Su et al.® These authors predicted numerically The well-known Hasegawa-Mima equation' is ob-
a structural destabilization of dipolar vortices. Thus we tained in the scaling ¢=e¢;(x0,x1,X2,...,70,71,72
asked ourselves the question of whether the predicted oot ) ENt o no=no(xy,xa,...), u=u,
monopoles are structurally stable. The answer is yes and ~0(e), and T,=T.(x,x3,...). Measuring T, in Ty
the proof will be given in the paper. Finally, we have (T=T,/Ty), ¢ in kgTole (p=ew/kgTy), viL in cs
developed a numerical solver for (spatially) two- | (v=uvii/es), tin Q7' (tQ;— 1), and ry in p; (x/ps
— x, n/ps— n), we can write the result as
5 K
aitl T(L]) —V(% (D]_{¢1,V(§¢|}0+u|a—?](;V5(])1—u] T(L]) ”L((TI) —a‘?]—odn =0. 4)

Here, V; is the 2D Nabla operator for the coordinates x¢ and o, {,}o is the Poisson bracket, also with respect to xo and
no, and k, =0, Inn,. Note that the Hasegawa-Mima equation determines the variation of ¢, on the xg,10,; scales.
Then all the x; dependences, e.g., of k, and 7, are irrelevant, meaning that the coefficients T ~"and «,/u, are constant
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on the x scale.

It is also easy to see that other scalings exist which allow monopolar solutions. The simplest one is
0=€20Cx1,x2 . o . TN, . Esiley. .. ) F 3G o mo=no(x2,x3,...), u=u;~0(e?), T=T(xzx3,...), and
T '+ x,/u;~0(e?). In this case one obtains in the lowest relevant order (appropriate for large-scale structures) the
equation

I TSR B SR A C Ol B B 8, _
ars T(X2) +u, am Vigr—u, T(xz) s ) am ¢2+K'T(X2)¢2 8!]1 0,=0. (5)
Here, V{ is the 2D Nabla operator for the coordinates x, l
and 1, kr=7T "'9InT/dx, and [-- -], indicates that equations (4) and (5) are valid in restricted parameter
the terms in the brackets combine to a second-order (in regimes. Thus, not only does the stability problem exist
€) contribution. Several aspects are worth mentioning: in the sense of initial perturbations,' but also structural
(i) In this model, the potential depends on x, and 7. perturbations can appear. For example, the dynamics of
Thus the characteristic length scale is p;/e and not p; as the dipolar solutions of Eq. (4) should be investigated
is true for dipolar vortices. (ii) Although the tempera- when a structural perturbation in the form of a scalar
ture is space dependent, the coefficient x7(x;) can be nonlinearity is present® and the dynamics of the monopo-
considered as constant when ¢, is solved as a function of lar vortices of Eq. (5) should be discussed when a
x; and n,. Thus the multiple-scale analysis resolves structural perturbation in the form of a vector nonlinear-
some of the controversies in the literature.'® (iii) The ity is present. The first problem was already considered
nonlinear term originates due to temperature inhomo- numerically® with the interesting result that dipolar vor-
geneity. However, because of the required relation tices are destroyed. More work is in progress'> on this
1 K (x2) topic. Here, we solve the second problem: We show that
=eXf(x2,x3,...), 6) monopolar vortices are quite stable. This fact will be
T(x2) u2 proved analytically, and also demonstrated numerically,
obviously, after differentiation with respect to x», in the following.
K7 =K U2 (7) Let us start with the analy.u.cal part. We present Fhe
. . ) . example of the structural stability of a monopole solution
follows which has been Izrequlr.ed by Lakhin, Mi- when it is disturbed by a vector-type nonlinearity. In
khalloYslfu, and Onochenko '~ by different argumc?nts. Ip this case, the basic equation is
our opinion, the above arguments make the physical ori-
gin of the scalar nonlinearity clearer. 3,:0+ud, V0 —up’d,0+x709,0 =als,V’e} ®)
Obviously, there exist some intermediate scalings where the right-hand side is considered as the (structur-
where both the vector nonlinearity {9,V2¢} and the scalar al) disturbance. For simplicity we have omitted all in-
nonlinearity x7¢8,¢ appear on the same footing. [A dices, introduced a smallness parameter a, and used the
trivial example is ¢=e20,(x1,x2,...), no=nolxs, abbreviation p?: = 1+x,/u. Equation (8) has stationary
X4y ), T=T(x3,x4,...,), u=u3~0(e3), T " "+x,/u monopolar solutions which are shown in Fig. 1. The pa-
~0(e?).] This is important in one respect. The model rameter Q =k7/2up’ controls the form of their radial
2.0
(a) 0=1.25
1.6}
1.2
Du —0=2.5
0.8}
15 20

FIG. 1. Numerical solutions for stationary monopoles. They are obtained from Eq. (8) for 9, =0 and ¢ =¢(r). The common pa-
rameters are p>=0.09 and u =0.11. (a) Radial dependence of the monopole ¢ for different parameters . (b) 3D plot of ¢u for
Q=2.5.

3028



VOLUME 64, NUMBER 25

PHYSICAL REVIEW LETTERS

18 JUNE 1990

dependences. After multiplying with ¢ and x7¢2, respec-
tively, and subsequent integration over space, we obtain
conserved quantities which can be combined to

L:=fd2r

Now, L =L{¢} —L{pp} can be considered as a Liapunov
functional.'® Here, @) is the reference state from the in-
variant set S which is generated from the stationary
monopole ¢y under consideration by translations,
or=0rpm(r—E&). In L, ¢y is defined as the element of S
which is closest to ¢. We have to note that with ¢ (r),
om(x—E,n—¢&,) is a stationary solution of Eq. (8).

For  conservative _perturbations, with  [d’r¢?
=Jd’r ¢is, we have 5L =0, and for the second variation
of L we obtain

8L =fd2r5¢H5¢, (10)

where H=—V?>—(xr/u)gp+p> Because of the
discreteness of the eigenvalues A < p? of the operator H
there exists a positive constant p>0 with (y|H|y)
> ply | y), provided the function y fulfills the relations
(w|om) =0, (w|8.6r)=0, and (y|d,0n)=0. The
proofs of these facts follow by variational procedures.
The constraints {y|d,ds»)=0 and (y|8,64) =0 follow
from the consistency relations when the closest state ¢y
is determined. For nonconservative perturbations, with
<I[/| #1)#=0, we can prove stability with respect to an in-
termediate state ¢, which is close to ¢p. Thus the sta-
bility of monopoles with respect to initial as well as
structural perturbations is proved.

For the numerical investigations of vortices we de-
veloped two different numerical schemes: a semi-implicit
Crank-Nicholson-type algorithm with operator split-
ting'> and an explicit leapfrog scheme. Both codes are
supplemented by a fast elliptic solver for the solution of
the vorticity equation at each time step, and both are of
second-order accuracy in time and space. The details of
the numerical methods will be presented elsewhere. '°

The codes were tested by monitoring several conserved
quantities during the time development of, e.g., a dipole
as an initial distribution in the Hasegawa-Mima case.
These quantities remained constant with a relative accu-
racy 510 % in long-time runs (1 = 400Q,').

The numerics verified very precisely the structural sta-
bility of monopolar solutions. This is important since the
analytic predictions, although valid for finite perturba-
tions, are restricted to small disturbances. In Fig. 2(a)
we show the final state of an initial monopole at
t=400Q;,” ! for u=—0.11, p>=0.09, and x7=—0.05
(@ =2.5). By comparing with Fig. 1(b) we cannot
recognize any destabilizing tendency. Even the more de-
tailed diagnostic, as depicted in Fig. 2(b), completely
supports the structural stability of monopolar vortices.
The same behavior occurs when we perturb the initial
distribution.

(V¢)2—%£ul¢3+p2¢2 . )

FIG. 2. (a) Time development for an initial monopole with
u=—0.11, x7=—0.05, and p>=0.09. The 3D plot is for
1=4000,"". (b) To support the stability result we have plot-
ted the pointwise differences ¢u (t =400) — ¢ (: =0) for
—20=<x,7n=<20. The contour lines show positive ( ) and
negative (---) deviations in steps Agy =0.75% 10 ~3.

These results also throw some new light on the
structural destabilization of dipolar vortices.> When
starting with a dipolar-vortex solution of the Hasegawa-
Mima equation and structurally perturbing the latter, we
observe the destabilization. For example, we add to the
right-hand side of Eq. (4) the term —x7¢,(8¢/9n0)
and solve for the parameter values 7 =1, «,=0.1,
u,=—0.15 a=6, and x7 = —0.05. On the other hand,
we can also use Eq. (8) with a=1. Figure 3 shows, in
addition, the tendency to form stable monopolarlike
structures which will survive for a long time. This simu-
lation clearly supports our conjecture that monopolar
structures are extremely important in drift-wave tur-
bulence.

In conclusion, for vortices scaling on the ion Larmor
radius at the electron temperature and weak temperature
as well as density inhomogeneities, the Hasegawa-Mima
equation' is the correct model. A different situation
occurs when we look for vortices on a long scale com-
pared with the ion Larmor radius at the electron temper-
ature. Then monopolar structures are possible. The
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t=80

=120 t=170

FIG. 3. Breakup of a dipolar vortex (shown by its contour
lines in steps of Agp =0.5 in x-n space) when a structural per-
turbation is added to the Hasegawa-Mima equation. The ten-
dency to form monopolar structures is clearly seen
(—=25=x,n=<25).

coefficient of the scalar nonlinearity is proportional to
the temperature gradient. This is not in contradiction to
the work of Lakhin, Mikhailovskii, and Onochenko'?
since consistency requires k7 = k,/u. Most important is
the new result that the monopolar vortices are quite
stable coherent structures. In contrast to the dipolar vor-
tices, they are structurally stable. This conclusion was
obtained by analytical tools and is supported by 2D
numerics. The agreement between the analytical predic-
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tions and the numerical computations is excellent. In the
future, the applicability of the 2D approximation will be
also discussed in the light of some new developments.'’
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