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Dipole and Monopole Vortices in Nonlinear Drift Waves
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The problems of existence and stability of drift vortices in plasmas with density and temperature inho-

mogeneities are studied analytically and numerically. It is shown that basically two space scales are in-

volved: (i) the ion Larmor radius at the electron temperature, where dipolar vortices exist, and (ii) a
longer space scale on which monopolar vortices are possible. The latter are shown to survive finite dis-
turbances. A Liapunov functional for structural stability is presented. The analytical predictions are
verified by a 2D numerical simulation.

PACS numbers: 52.35.Kt, 52.35.Mw, 52.35.Ra

The fundamental work of Hasegawa and Mima' on

the existence and nonlinear dynamics of dipolar drift
vortices in plasmas with density inhomogeneities stimu-
lated many investigations on spatially coherent nonlinear
structures in drift-wave turbulence. Various authors
emphasized that solitary vortices could play an impor-
tant role besides the mode-mode-interaction processes.
Meanwhile, there exist experimental verifications" of
some of the predictions which also reveal a great similar-

ity to astrophysical observations. ' Also, in numerics,
dipolar as well as monopolar structures are seen. With
respect to the latter, Petviashivili'' developed a model
which later on was criticized by some authors. ' ' Thus
the situation is as follows: For dipolar drift vortices in

plasmas with density inhomogeneity, the Hasegawa-
Mima equation' is the well-accepted correct model; the
potential varies on the characteristic length scale p„ the
ion Larmor radius at the electron temperature. Howev-

er, the problem of temperature-gradient model equations
is still open. In this paper we want to contribute to a
resolution of the controversial discussion in the litera-
ture ' '"

by applying a multiple-scale analysis. The first
main outcome of this discussion will be that the existence
of dipolar or monopolar vortices, respectively, depends
on the length scales under consideration: Dipolar vor-

tices exist on the p, scale, whereas the characteristic
length of the possible monopolar vortices is of the order

p, /e, where e is a smallness parameter to be discussed
later. The second result of our investigation was stimu-
lated by Su et al. ' These authors predicted numerically
a structural destabilization of dipolar vortices. Thus we

asked ourselves the question of whether the predicted
monopoles are structurally stable. The answer is yes and
the proof will be given in the paper. Finally, we have
developed a numerical solver for (spatially) two-

V(S VExa (C/ rt; B)(81+VExa' V)Vtp (3)

where t), =eB/cm; and vE, is=(c/B)zxV1p.
A straightforward combination of these equations

leads to a single, however, complicated, equation for p
where, of course, the background density no and the elec-
tron temperature are space dependent, e.g. , no=n0(x)
and T, =T, (x). In order to simplify Eqs. (1)-(3) to a
tractable model equation it is most appropriate to intro-
duce within a multiple-scale analysis the variables
x, =e'x, g;=t."g, t, =e't, for i ~0 and @&&1. Here, we
moved into the frame g =y —ut.

The well-known Hasegawa-Mima equation ' is ob-
tained in the scaling p =ett11(xo,x1,x2, . . . , rio, rit, rip,

t2, . . .)+e I(2+ ' ' ', l rot( to,X1,X. 2. .), u =u1
-0(e), and T, = T, (x1,x2, . . . ). -Measuring T, in T0
(T = T,/To), tv in ktt T0/e (1)t =earp/ktt To), v;& in c,
(v=v;&/c, ), t in 0; ' (tQ; t), and r& in p, (x/p,

x, ri/p, rt), we can write the result as

dimensional Hasegawa-Mima-type equations in order to
test the stability predictions. The advantages and disad-
vantages of various procedures are discussed and numeri-
cal results are presented.

Let us exemplify these ideas for a simple model; more
complicated generalizations are possible along the lines
outlined below. We assume a uniform external magnetic
field Bz, write the ion density (n, ) continuity equation in

the simplest form,

(8, +v, & V)inn;+V v, =0, (I)
and assume quasineutrality and Boltzmann-distributed
electrons,

n; = n, =n0 ,

exp�(et'/ktt

T, ) . (2)
Here, p is the electrostatic potential and T, is the elec-
tron temperature. For the 2D ion velocity we use the
drift approximation

(4)
8 1 tc„(x1)

0 4'1 I411 V0411IO+ u1 VOts1 u1 + Pl =0.
t)t1 T X1) r)tl0 T x1 u1 t)rt0

Here, V0 is the 2D Nabla operator for the coordinates x0 and ri0, I, I0 is the Poisson bracket, also with respect to x0 and
t)0, and tc„=8, 1nn11. Note that the Hasegawa-Mima equation determines the variation of 411 on the X0, g0, t1 scales.
Then all the x1 dependences, e.g. , of tc„and T, are irrelevant, meaning that the coefficients T and tc„/u1 are constant
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dependences. After multiplying with P and xTP, respec-
tively, and subsequent integration over space, we obtain
conserved quantities which can be combined to

e'+ p'e' (9)
aJ 3 u

I

Now, L =Lip) —L lp~l can be considered as a Liapunov
functional. ' Here, pM is the reference state from the in-
variant set S which is generated from the stationary
monopole pM under consideration by translations,
P~ =PM (r —(). In L, P~ is defined as the element of S
which is closest to p. We have to note that with t/t~(r),
pM (x —g„, r/

—(„) is a stationary solution of Eq. (8).
For conservative perturbations, with f d rp~

=f d r pM, we have //L =0, and for the second variation
of L we obtain

b''L = d 2r ht/tHby, (10)

where H= —V —(xT/u)p~+p . Because of the
discreteness of the eigenvalues X (p of the operator H
there exists a positive constant p) 0 with (t/tlH l t/t))pit/tl t/t), provided the function t/t fulfills the relations
(yl&M) =0, (pl~~lM) =0, and (yl8„&~)=0. The
proofs of these facts follow by variational procedures.
The constraints (t/t l ti„&~)=0 and (t/t l 8„&~)=0 follow
from the consistency relations when the closest state pM
is determined. For nonconservative perturbations, with

(t/t l &M)%0, we can prove stability with respect to an in-
termediate state pM which is close to &M. Thus the sta-
bility of monopoles with respect to initial as well as
structural perturbations is proved.

For the numerical investigations of vortices we de-
veloped two different numerical schemes: a semi-implicit
Crank-Nicholson-type algorithm with operator split-
ting' and an explicit leapfrog scheme. Both codes are
supplemented by a fast elliptic solver for the solution of
the vorticity equation at each time step, and both are of
second-order accuracy in time and space. The details of
the numerical methods will be presented elsewhere. '

The codes were tested by monitoring several conserved
quantities during the time development of, e.g. , a dipole
as an initial distribution in the Hasegawa-Mima case.
These quantities remained constant with a relative accu-
racy (10 in long-time runs (t =4000; ').

The numerics verified very precisely the structural sta-
bility of monopolar solutions. This is important since the
analytic predictions, although valid for finite perturba-
tions, are restricted to small disturbances. In Fig. 2(a)
we show the final state of an initial monopole at
t =4000; ' for u = —0.11, p =0.09, and xT= —0.05
(0 =2.5). By comparing with Fig. 1(b) we cannot
recognize any destabilizing tendency. Even the more de-
tailed diagnostic, as depicted in Fig. 2(b), completely
supports the structural stability of monopolar vortices.
The same behavior occurs when we perturb the initial
distribution.
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FIG. 2. (a) Time development for an initial monopole with
u —0.1l, KT —0.05, and p2 0.09. The 3D plot is for

4000, '. (b) To support the stability result we have plot-
ted the pointwise differences pM (t =400) —

pM (t =0) for
—20&x, r/~20. The contour lines show positive ( ) and
negative (---) deviations in steps hpM 0.75x10

These results also throw some new light on the
structural destabilization of dipolar vortices. When

starting with a dipolar-vortex solution of the Hasegawa-
Mima equation and structurally perturbing the latter, we

observe the destabilization. For example, we add to the
right-hand side of Eq. (4) the term —xT&i(8&l/8r/0)
and solve for the parameter values T =1, K„=0.1,
u = —0.15, a =6, and xT= —0.05. On the other hand,
we can also use Eq. (8) with a=1. Figure 3 shows, in

addition, the tendency to form stable monopolarlike
structures which will survive for a long time. This simu-

lation clearly supports our conjecture that monopolar
structures are extremely important in drift-wave tur-
bulence.

In conclusion, for vortices scaling on the ion Larmor
radius at the electron temperature and weak temperature
as well as density inhomogeneities, the Hasegawa-Mima
equation' is the correct model. A diITerent situation
occurs when we look for vortices on a long scale com-

pared with the ion Larmor radius at the electron temper-
ature. Then monopolar structures are possible. The
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tions and the numerical computations is excellent. In the
future, the applicability of the 2D approximation will be
also discussed in the light of some new developments. '

This work was supported by the Deutsche For-
schungsgemeinschaft. The numerical assistance by V.
Naulin is gratefully acknowledged.
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FIG. 3. Breakup of a dipolar vortex (shown by its contour
lines in steps of At((n =0.5 in x-Il space) when a structural per-
turbation is added to the Hasegawa-Mima equation. The ten-
dency to form monopolar structures is clearly seen

( —25 (x, (1 ~ 25).

coefficient of the scalar nonlinearity is proportional to
the temperature gradient. This is not in contradiction to
the work of Lakhin, Mikhailovskii, and Onochenko'
since consistency requires xT = x„'/u. Most important is
the new result that the monopolar vortices are quite
stable coherent structures. In contrast to the dipolar vor-
tices, they are structurally stable. This conclusion was
obtained by analytical tools and is supported by 2D
numerics. The agreement between the analytical predic-
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