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A closed set of fluid moment equations is developed which represents kinetic Landau damping physics

and which takes a simple form in wave-number space. The linear-response function corresponds to a
three-pole (or four-pole) approximation to the plasma dispersion function Z. Alternatively, the response

is exact for a distribution function which is close to Maxwellian, but which decreases asymptotically as
1/v' (or 1/v ). Among other applications, these equations should be useful for nonlinear studies of tur-

bulence driven by the ion-temperature-gradient instability or other drift-wave microinstabilities.

PACS numbers: 52.35.Qz, 02.60.+y, 52.25.Kn

Because of their relative simplicity, fluid moment

equations have been used in a number of recent non-

linear studies of turbulence driven by the ion-tempera-

ture-gradient (ITG) instability ' and other microinsta-

bilities. This turbulence is of interest because it can
cause transport in tokamaks and other plasmas. Mo-
ment equations must be closed by an approximation
scheme. The classic method of Braginskii is rigorous in

the short-mean-free-path regime, but inapplicable to
collisionless plasmas. This Letter proposes a closure
method which (1) ensures particle, momentum, and en-

ergy conservation, (2) takes on a simple form in wave-

number space, and (3) has a linear-response function

very close to that of a collisionless, Maxwellian plasma.
This closure method successfully models kinetic reso-

nances (such as Landau damping) not only in one di-

mension but also in slab geometry where it reproduces
the correct marginal stability behavior of the ITG mode.

Several authors have suggested that the effects of ki-

netic Landau damping may be modeled in fluid moment

equations by adding dissipative terms. Lee and Dia-
mond' set the parallel momentum viscosity to ps= v, ;/

~
to ~, where co is the mode frequency, and

v„(T;/m;)'/ is the thermal ion speed. Hamaguchi
and Horton suggest modifying both p~~ and the parallel
heat conductivity gs, although their simulations use

values which are constant for all modes independent of
wave frequency and wavelength. Waltz has proposed
setting ps ps=min(2 vu/)ks), 2v„/(to, )), where to,
is the real part of an instantaneous estimate of the mode

frequency. However, no comparison of any of these
models with exact kinetic Landau damping has been

published. %'e shall show that any model with a nonzero

p~~ faces difficulties of interpretation and yields inaccu-
rate thresholds and growth rates for the ITG instability.

It has been suggested' that Landau damping for ITG
modes can be ignored well above marginal stability so
that Braginskii-based fluid equations can be used. How-

ever, kinetic effects cannot be ignored for higher radial
eigenmodes which appear to cause more transport. '

e e 2
' t)fpldv

n dv f= np —R(g)—= kv, ' dv
Tp Tp " kv —to

(2)

We have defined a normalized response function R(g), a
normalized frequency g co/~ k ( v, J2, and a generalized
"temperature" Tp mv, mfdv fpv /fdv fp. Following
Landau's prescription to insure casuality, ' the velocity
integral in Eq. (2) is along the real axis only for
Im(to) )0, otherwise the integral must be analytically
continued for Im(to) ~0 (i.e., the velocity contour in-

tegral must be deformed around the pole at v =to/k).
The response function for a Maxwellian fp is shown in

Fig. 1 and can be written as R(() =I+(Z(g), where
Z(g) =n 't fdtexp( —t )/(t —() is the usual plasma
dispersion function. Note that for a general fp and real

(, the imaginary part of R is related to fp by

7tVt

np 8v
(3)

Thus, when we develop a fluid approximation for the

Furthermore, most experiments find that the observed
ion temperature gradient is usually within a factor of 2
or less of marginal stability, so that kinetic effects are al-

ways important. Recent experimental counterexamples
to ITG marginal stability cast some doubt on the accura-
cy of present ITG theories.

We first discuss the simplest possible case of linear
one-dimensional electrostatic waves. The exact kinetic
response, to which we will compare our fluid approxima-
tions, is governed by the one-dimensional Vlasov equa-
tion

8f + Bf + e ~ Bf
8t 8z m 8v

where f(z, v, t) is the particle distribution function as a
function of position z, velocity v, and time t Consider.
the linear response f fp(v)+f(z, v, t) to a small driv-

ing electric field E = —8&/8z. After the standard
Fourier-Laplace transforms where perturbed quantities
vary as exp(ikz —i tot), the exact linear response is
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I I I I and p are integral operators in physical space because
they are proportional to v, /i k i in wave-number space.
For example, by performing the inverse Fourier trans-
form of qk, we find that the real-space representation of
q(z) is

q(z) = 1
im dk e&ke I k I ~q
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FIG. 1. The real and imaginary parts of the normalized
response function R(g) —nTe/neettI vs the normalized fre-
quency (. The solid lines are the exact kinetic result for a
Maxwellian, R(() -I+gZ((). The dashed lines are from the
three-moment fluid model with I 3, pt 0, and gl 2/Ji.
The dotted lines are from the four-moment model.

Maxwellian R(g), we can find an frI which will give an
identical kinetic response by integrating Im(R(() ).

Consider the following generalized set of fluid equa-
tions for the particle density n fdv f, the momentum
density mnu =m fdv fv, and the pressure p =m Jdv f(v-u)'

an a+ (un) =0,
z

(mnu)+ (umnu) = — +enE—a ap aS
ar az

=-a', —
a,

+ (up) = —(I —1)(p+S)a au aq
ar az a, a',

(4)

(5)

The heat flux moment is q=mjdvf(v —u) . In the
I =3 and S=0 limit, Eqs. (4)-(6) are exact moments of
Eq. (1) and therefore represent particle, momentum, and
energy conservation. We have introduced a dissipative
momentum flux S and an adjustable ratio of specific
heats I in order to compare with previously suggested
Landau damping models, although we will conclude that
it is best to set I =3 (as expected for a collisionless one-
dimensional gas where ptt and pi decouple) and S=O.
Previous models based on Braginskii's collisional equa-
tions assume ptt =p& so that I"= —,

' . Kinetic efl'ects are
modeled by judicious closure approximations for q and S
which are most straightforward in wave-number space.
We will assume linear closure approximations of the
form

2 i/2,
qk

= —
no@) ikTk, (7)

and, similarly, Sk = —mnopt2' (v, /i k i )ikuk, where gl
and p I are dimensionless coefficients, and T =(p —Ton)/
no is the perturbed temperature. These closure Ansiitzes
can be written symbolically in the standard Fick's law
forms q = —ngaT/az and S=mnpau/az, except that g

dz'
, , (8)

nIIXI2' vl '",T(z+z') —T(z —z')
X 4o z

where we have used the convolution theorem, and the
factor of exp( —

i k i e) was added to define infinite in-

tegrals. Equation (8) shows that the parallel heat flux

q (z) is driven by an average nonlocal temperature
difference. Many numerical codes use a spectral repre-
sentation in the magnetic-field direction and so can use
the simple Fourier representation for qI, rather than the
convolution form for q(z).

Let us turn to the choice of the free parameters gi, pi,
and I. Linearizing Eqs. (4)-(6) leads to the following
three-moment fluid model for the response function:

8 BQq+ (uq) = —3q +3 P 9 Br
ar a. a. mn a. a. ' (10)

ztR3=
g, —I'I tr' —2I'g, p, ( 2g, ( ——2p, ( + 2i (

Our Ansatz for q and S has led to a response function
which depends only on g, as it should. Note that the
three-moment fluid model yields a three-pole approxima-
tion for the response function (and therefore for the plas-
ma dispersion function Z). The asymptotic expansion of
R3 in the cold-plasma limit i gi »1 is R3- —I/2(
+ipt/2( + . According to Eq. (3), this implies that
R3 is equivalent to an fo(v)-const/v and hence has an
infinite-pressure moment. Therefore we choose pl =0.
(Because the ITG instability is driven by gradients in the
pressure moment, one may question the applicability of
any plaO model. ) Carrying the asymptotic expansion
to higher order then gives us R3——I/2g —I /4t,"
+i(I —1)gl/4( +, which is equivalent to a more
physical fo(v) —1/v . Setting I =3 puts the proper
amount of compressional pau/az heating into Eq. (6) to
conserve total energy. Expanding R3 for small I,

" leads to
R3 = I +i 2(/gt. Requiring this to match the Maxwelli-
an R for small g leads to the condition gl =2/Jz. Al-

though gl is chosen to fit the low-frequency limit, the
closure is used in fluid equations which are automatically
valid in the high-frequency limit, and the resulting R3
does a fair job of approximating the Maxwellian R over
the full frequency range (Fig. 1), and is equivalent to an

fo(v) which is fairly close to Maxwellian (Fig. 2).
We obtain more accurate results by applying our clo-

sure to a four-moment fluid model. For the first three
moments we use Eqs. (4)-(6) with I =3 and S=O. The
heat flux q is then found from the next moment of the
Vlasov equation:
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FIG. 2. The fo(v)'s equivalent to our three-moment model
(dashed line) and four-moment model (dotted line) compared
with a Maxwellian (solid line).

where r= mfdv f—(v —u) =3p /rn—n+br. Using our
linear low-frequency closure method, br can be expressed
in terms of lo~er moments as

brk = —Di ikq~+pinp2v, Tq,

where Di 2Jz/(3n 8) and P—l (32 —9z)/(6tr —16).
This is accurate through second order in (, while our clo-
sure for qp was only first-order accurate. The resulting
response function is an excellent four-pole approximation
of the function Z, equivalent to an fp(v)-1/v (Figs. 1

and 2).
Having shown the effectiveness of our fiuid model of

Landau damping in the simple one-dimensional case, we
now show that the same model continues to work in a
more complicated system which describes the ITG in-

stability. Consider electrostatic perturbations in an un-
sheared slab geometry governed by the zero-gyroradius
drift-kinetic equation:

Rs: =1 —qg. + [(—g. (1 —
—,
' ~+ qg')]Z(g) .

n peg

(12)

We have made use of the following definitions: (=to/
i ki i v, J2, (~ =co~/i ki i v, J2, tv~ =(cTp/eB)k~/L„, 1/L„

e+(viib+vE) Vf+ —Ei 0,
m Bvi

where f=f(viii, vi, x, t) is the gyroaveraged distribution
function, ve c(Exb)/B is the ExB drift, b-i B/B is
the direction of the magnetic field, and v t is the velocity
parallel to b. (While the zero-gyroradius limit describes
some basic properties of the ITG instability, one must in-
clude second-order gyroradius corrections in order to get
the radial eigenmode equation in a sheared slab. ) We
linearize and Fourier transform as before, except now fp
is Maxwellian with density and temperature gradients in
the I direction. The resulting slab response function is

=(Bnp/Bx)/n. , 1/L, -(BTp/Bx)/Tp, and ri =L„/Lr
Note that Eq. (12) reduces to Eq. (2) in the one-
dimensional m~ 0 limit.

Extending the three- and four-moment models from
one dimension to slab geometry is straightforward. Tak-
ing parallel velocity moments of Eq. (11) leads to a set
of fiuid equations for the density n, parallel momentum
density mnuii mfd v fvi, parallel pressure pii=mfd v

xf(vii —ui) ', and parallel heat flux qii -m fd vf
x(vii —uii), which are identical to the previous one-
dimensional equations [(4)-(6) and (10)] for n, u, p,
and q, except that B/Bt is replaced by B/Bt+v~ V. The
Braginskii-type fluid equations used in previous tur-
bulence studies' can be written in this form in the
zero-gyroradius limit. We have written the fluid equa-
tions in their fully nonlinear form as exact moments of
the kinetic equation, though general drift-wave tur-
bulence scaling arguments indicate that only the vE V

nonlinearities (and some finite-gyroradius nonlinearities
when present) need to be kept.

We make the same closure approximations as in the
one-dimensional case. For example, after linearizing and
Fourier transforming, the three-moment closure approxi-
mations are qi —ikinpgi2' v, Ti/ski and Si, —i
xkiimnppi2' v, u /iik ti. This leads to the following
three-moment response functions for an unsheared slab:

gi tg+t—i".~ [I+rt I +2—(ized(+tuii: Zitt i—+(')]
g, —i I-g —2', p, g 2g, (2 ——2tt, g +2t'(

(13)

In order that R, 3 be uniformly good approximation of
the exact kinetic R, for all values of g~ and rt, we would

like to be able to show that Eq. (13) can be rewritten in

the form of Eq. (12) but with Z(g) replaced by its
three-pole fluid approximation Zi(g) [Ri(g) —I]/g. It
is straightforward to show that this is possible only if

0 and I 3, and we come to the conclusion that the
same three-moment model which worked in one dimen-

sion (pi 0, I 3, and gl 2/Jx) continues to work just
as well in slab geometry, while previously suggested
models will have errors proportional to pirt. (These er-
rors vanish in the rt 0 limit, so a viscosity-based two-

moment model might be useful for rt 0 drift waves. )
Our four-moment model leads to a slab response func-
tion which automatically factors into the form of Eq.
(12) with the following four-pole approximation for the
function Z:

z, (g) = i 4Dq i + (10+4P i )( i 4Dq i ( —4g-
3+2P| i6Dqig (12+4Pi)i; +i4Dqig +4i;

We will now investigate the dispersion relation for the
ITG instability which results from using Eq. (13) for
the ions, and a Boltzmann response for the electrons,
n, =npiei&7T, p. (Subscripts i or e indicate ion or elec-
tron species. ) Imposing quasineutrality n; =n„ the
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dispersion relation is found from the roots of R, 3

= —T;rr/ T, rr, which is a cubic equation for ( and so will

have three roots. In the 1D limit g~; =0, and with

T;o« T,o, the three roots are ro =+ kic, (i.e., the usual

ion acoustic waves with c, =T,o/m;) and to= —i2(2/
rr) '

~ ki ~ vi, . This strongly damped "heat wave" corre-
sponds to phase mixing which takes a purely exponential
form for our fn(v). Consider the dispersion relation with

(or to~; &&
~
kt ~ v, ;42). One of the roots is

ar = —(T,o/T, o)or~, = to~, (the familiar electron drift
wave). Another root is always damped for ri; &0. Near
marginal stability, (« 1, the third root is given by

« ——I+2ZiI i)
N=1

Jz I~+Pi

This is the ITG-mode dispersion relation near marginal

stability. Inserting our recommended values of I =3,
p~ =0, and g~ =2/Jz, we are able to reproduce the exact
kinetic results"' in the small-kstr limit for the thresh-

old and growth rate [co=i
~ ki ~ vi, (ri; —2)J2z/4 is ob-

tained from Eq. (12) in the (+;» I, g«1 limit]. Previ-

ously suggested models all result in errors in the margin-
al-stability dispersion relation, confirming our original
concern about It ~

NO models because they correspond to
an fo(v) which has an infinite-energy moment while the
ITG instability is driven by gradients in the energy mo-

ment. (Another possible choice for I =3 might appear
to be g; =0 and It~ =2/Jz, but then R3 fails to recover

the fundamental Boltzmann limit for g« I and g+ =0.)
There are some similarities of our closure method with

Kadomtsev and Pogutse's derivation of reduced MHD-
like turbulence, ' but they use a viscosity-based model

which will not work for ITG modes. Wang, Callen, and
Chang' are applying a related closure procedure to the
more ambitious problem of deriving fluid equations from

the full three-dimensional Boltzmann equation including

collisions. In the drift-kinetic ordering, their closure is

expressed as complicated functions of the function Z and

so is linearly exact (but difficult to implement in a non-

linear initial-value code where the frequencies are not

known). Their closure reduces to ours in the low-

frequency limit co ((kv, . We show that this much

simpler low-frequency closure leads to an approximation
for R which is fairly good for all frequencies. Also, their

present formulation is missing some nonlinear parallel
pressure terms which we have kept.

Our Auid models of kinetic resonances should improve

the accuracy of future nonlinear calculations of ITG and

other microinstability turbulence. Future work should

also add finite-gyroradius and toroidal eff'ects to these
equations. In the course of thinking about these issues,
we (and, in particular, G.W.H. ) have benefited from dis-
cussions with Dr. Liu Chen, Dr. John Krommes, Dr.
Taik Soo Hahm, Dr. Hamid Biglari, Dr. W. W. Lee, and
Dr. Andris Dimits. Many of the calculations for this pa-
per were done with the very useful Mathematica com-
puter program written by Wolfram. ' This work was
supported by U.S. DOE Contract No. DE-AC02-
76CH03073.
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