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Calculation of Universal Scaling Function for Free-Electron-Laser Gain
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We present a variational calculation of free-electron-laser gain in the exponential regime before satu-
ration using a dispersion relation incorporating the energy spread, emittance, and focusing of the elec-
tron beam, and the diff'raction and guiding of the radiation. Rapid computation facilitates free-
electron-laser design optimization. Results are expressed in a universal scaled form.

PACS numbers: 42.55.Tb, 41.70.+t, 52.75.Ms

The free electron laser (FEL) holds great promise' as
a source of intense coherent radiation at wavelengths

below 1000 A. In the case of an FEL oscillator, the
difficulty in developing high-reflectivity mirrors for
short-wavelength radiation requires high gain to over-
come large cavity losses. For a single-pass FEL, the e-

folding length of the amplified radiation must be mini-

mized to reduce the required length of the wiggler mag-
net. To achieve high gain for short-wavelength radia-
tion, the electron beam must have high peak current,
small normalized transverse emittance, and small energy
spread. Strong focusing of the electron beam is also
necessary to achieve the shortest wavelengths, and the
use of ion focusing has been proposed.

In this Letter, we present an analytic calculation of
the FEL gain valid in the regime of exponential growth
before saturation, based upon a dispersion relation de-
rived from the Vlasov-Maxwell equations. This extends
earlier analytical work on the exponential regime by in-

cluding, simultaneously, the effects of the energy spread,
emittance, and the focusing5 of the electron beam, and

the diffraction and guidings s of the radiation field. The
dispersion relation is solved using a variational approxi-
mation, and the results for the e-folding length of the
electric field of the fundamental guided mode are ex-

pressed in a scaled form [Eq. (11)]. With a reasonable
choice of the frequency detuning [Eq. (13)], the e-

folding length is a universal function of three dimension-
less variables (emittance-to-wavelength ratio, scaled
electron focusing strength, and scaled electron-energy
spread) and a dimensionless scaling parameter [Eq.
(10)] measuring transverse current. Some graphs of the
universal function are given in Figs. 1(a)-1(c). These
graphs can be used for quick estimates of the gain for
quite general parameters. Until now, only large simula-
tion codes' '' requiring long CPU running times on fast
computers could include all the eA'ects determining FEL
gain. Our analytic approach has several advantages:
rapid computation time, elucidation of the dependence of
the gain on the large number of system parameters, and

the ease of design optimization. We have checked that
the variational approximation yields agreement to within

1% with exact results' which we have derived for a
parallel electron beam with finite beam size and energy
spread, and to within 5% with several cases with nonvan-

ishing emittance run on the simulation codes FRED and
FELEx. These comparisons will be described elsewhere.

In our calculation, the electron beam's energy distri-
bution h(y) is Gaussian, with average energy yomc,
and rms spread your. The static wiggler magnetic field

has period length X„and wave number k„=2tr/X„. The
resonant radiation frequency co, =k,c of the FEL is

determined by k, 2 yo k /(1+ K ), where K =e8, J
k mc and 8, , is the rms value of the wiggler magnetic
field (in mks units). We assume either a helical wiggler
or a flat wiggler with parabolic pole faces. After averag-
ing over the fast wiggler oscillations, the transverse elec-
tron motion is described by harmonic betatron oscilla-
tions in the transverse displacement, d R/dz = —

kp R.
In the absence of external focusing, the betatron wave

number is kp Kk /yJ2.
Initially, we assume the electron beam has a uniform

longitudinal density, and a uniform "water-bag" distri-
bution inside a four-dimensional sphere in the four-
dimensional transverse phase space R =(x,y), R'=dR/
dz - (x',y'):

U(R R') = 8(k R —k R —R' )P o P
X p 0

where the step function 8(v) =1 for v )0 and 8(v) =0
for v &0. Integrating U(R, R') over the angular devia-
tion R', one obtains the parabolic transverse density
profile: g(R) =no(1 —R /Ro ) for R (Ro, and g(R)
=0 for R & Ro. The peak electron density is no, and the
electron-beam current is Io=enocnR0/2 The rms trans-.
verse emittance e of the matched electron beam is
defined by

((x 2)(x 2) ) I/2 ((y 2)(y 2) ) I /2 —k Ro2/6 . (2)

We consider the linear region before saturation, and
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FIG. 1. Scaling function vs scaled emittance for several values of k~/k D, corresponding to scaled energy spreads (a) o/D =0, (b)
o/D 0. 1, and (c) o/D 0.2, with the detuning as given in Eq. (13).

write the electric field of the fundamental guided laser mode of frequency co in the form

E(r, ro)e '" "e '" ' ' ' e+c.c. , (3)

where e is either the helical-polarization vector (x+iy)/J2 or the linear-polarization vector x. The function E(r, ro)

describes the transverse-mode profile in terms of the dimensionless coordinates ' r =+2k„k„R. The factor
exp( —ipk„z) describes the deviation from free-space propagation and 2zimp is the growth rate per wiggler period.
The e-folding length L of the electric field of the amplified mode is given by

I/L k„ imp . (4)

Assuming yp»1, so that space-charge effects are negligible, Vlasov-Maxwell equations have been used to derive a
dispersion relation determining p and E(r):

f 0
2(&~+p)E(r) =—(2pyo) J h'(y)„d p„dse '"u(p +x r )E rcos(xs)++sin(xs)

y'
(5)

where x k /ks„ch r actaerizes the focusing strength and the Laplacian V& corresponds to the dimensionless coordinates
r. In addition, we have defined

a =p+ (co —co, )/ro, —2(y —yn)/yo+ (p '+ x'r ')/4,

u(p' +rx') =(I/xx'a')0(x'a' x'r' —p'), —

(2pyn) =e ZonoK [JJ] /2mck„. ,

with [JJ]=1 for a helical wiggler, and

[JJ]=Jo(K /2(1+K )) —J (K /2(1+K ))
for a flat wiggler. The radius corresponding to the edge of the electron beam expressed in dimensionless coordinates is
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a = /2k, k„Ro, and Zo =377 0 is the impedance of free space.
The dispersion relation of Eq. (5) corresponds to the stationary solutions of the variational form

with

d rE(r)(V&+p)E(r) = d r d r'E(r)K(r, r')E(r'), (6)

fO
K Sd$2 2 is~/4 3'o x a2 2

K(r, r') =(2p) h(y)dy u(x a —w)e"" "exp —is p+ —2 +
4 " -"sin'(x-s) ~r yo

where

xw= [a sin (rs) —r r' +2—r r'cos(vs)].
sin (xs)

The region of integration over d rd r' in Eq. (6) is re-

stricted to w ~ 0. As a trail function, we choose

E(r) ='
r

e
—g» /2a

(7)
,AHo' (rJp), r ~ a,

where we require Imv p & 0 to satisfy the boundary con-
dition at r ~, and Hq~'~ is the Hankel function. Con-

tinuity of the logarithmic derivative at r =a leads to the

constraint

aJpH"'(a Jp)/H"'(a Jp) = —g

The trial function of Eq. (7) is the exact solution out-
side the electron beam, and inside it has the correct lead-
ing behavior in both the large and small electron-beam-
size limits. Although the trial function contains no free
parameters to vary, the stationary property of the varia-
tional form assures that the error in the complex eigen-
value p depends quadratically on small errors in the trial
function. Employing Eq. (7) in the variational form of
Eq. (6) yields

r 2
sds p N CO» g

exp —
I,
—+ s —2 — s

cos(x's/D) D ro, D D
1
—e l —e (9)

with

K' x
g~ 3is —(k,e)+- I+ cos —s

D 2 D

&/2

4&zo K' io JJ .
zmc 1+K Xo

(10)

Equations (8) and (9) can be solved to determine com-
plex parameters g and p/D. Observing that Da =12k,
xe(D/x), it is seen that the e-folding length L of the
electric field can be expressed in the scaled form

I ~ kp co co,
=Imp =DG k, p, —,kL D kD' roD

'j ~ kp co co»
=Imp =pF a, —,

k L 'p'k„p' CO»P
(12)

The scaling parameter D defined in Eq. (10) is a mea-
sure of the transverse electron current. It is straightfor-
ward to verify that the scaling noted in Eq. (11) also
holds for the exact solution of the dispersion relation of
Eq. (5). Therefore, this scaling should provide a useful

way to organize the results of computer-simulation
codes.

An alternate form of the scaling relation is

!
which follows immediately from Eq. (11) upon noting
that D=2pa, where p is the Pierce parameter' defined

following Eq. (5) and the scaled electron-beam radius a
is defined by' a =2pa 24(k, e)(pk /kp).

The one-dimensional calculation of Ref. 13 assumes a
parallel electron beam and ignores diffraction of the ra-
diation. Angular spread was included by Colson and
Blau, ' but diffraction was ignored. Moore included
diffraction, but not angular spread. Our paper presents
the first analytic calculation including all of the effects of
energy spread, emittance, and focusing of the electron
beam, and the diffraction and guiding of the radiation.
The importance of dimensionless scaling variables was
discussed in Refs. 1 and 2. Our scaling relations of Eqs.
(11) and (12) are new results, and here we present the
first calculation of the universal scaling function deter-
mining FEL gain.

Utilizing the variational approximation, we have
determined the universal gain function G =Imp/D [of
Eq. (11)],by numerically solving Eqs. (8) and (9). Be-
cause of the scaling law, the entire physical parameter
space can be described by the dependence of G on four
dimensionless scaled variables. In Figs. 1(a)-1(c) we

plot G =Imp/D against 2k, e=4zce/A, „, for several values
of the scaled focusing strength ks/k„D, corresponding to
scaled energy spread (a) cJ/D=0, (b) cr/D =0.1, and (c)
cr/D =0.2. For each point (2k„e,kp/k D,o/D ), the
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FIG. 2. Electric-field e-folding length at 300 A vs betatron
wavelength for wiggler periods of 1, 2, and 3 cm.

10

scaled detuning is chosen to be

COp D
kp= —3 k, e,
W

(13)

which we have found to yield near-maximum gain. This
detuning corresponds to the reduction of the average lon-

gitudinal velocity due to the nonvanishing emittance and
focusing by the wiggler and/or ions. Figures 1(a)-1(c)
cover most of the practical range of the FEL parameters,
and they can be used to obtain quick estimates of the
electric-field e-folding length.

Suppose we wish to optimize the design of a FEL
operating at X„=300 A. We assume the source of the
electron beam is a linac having fixed normalized emit-
tance e„=yam=3 mmmrad. In the optimization, we fix

the electron current ID=200 A, and the electron-beam
energy spread o =0.1%. We assume the flat wiggler to
be of hybrid design with Nd-Fe-B magnet blocks and
vanadium-Permendur pole tips. The peak on-axis mag-
netic field is related to g/A, „(the gap-to-period ratio) by
Halbach's relation ' (g/k„~ 0.722):

8„=3.44exp[ —5.00(g/X„)+ 1.54(g/X ) 1. (14)

We fix the gap at g =4 mm, and consider the gain as a
function of the wiggler period k and the betatron wave-

length A.P. Once k is chosen, 8„ is determined by Eq.
(14), and yo by k, =300 A. In Fig. 2, we plot the e-

folding length L of the electric field against the betatron
wavelength A, p =2tr/kp for the following three cases:
(X =1 cm, yo=439, 8„=0.6 T), (X„=2cm, y0=1177,
8 =1.35 T), and (k„=3 cm, yo=2639, 8 =1.82 T),
all corresponding to radiation wavelength A,, =300 A.
The case of A, =2 cm gives the shortest gain length, with

the minimum corresponding to betatron wavelength A.~
=5 m. In this case, the natural focusing of the wiggler
yields A,p=13 m, so an enhancement of the gain is

achieved by increasing the focusing over that produced

by the wriggler itself.

Employing Eq. (11), we can discuss the scaling with

energy yo when we try to push to a shorter wavelength.
We shall consider the wiggler parameters X and K
fixed, and suppose the energy yo to be increased, result-
ing in a reduction of the radiated wavelength ) „-yo
We shall keep D [Eq. (10)] constant by increasing the
current proportional to energy, Io- yo, and maintain k„e
constant by assuming the normalized emittance is re-
duced as e„—1/yo. We shall also assume the fractional
energy spread a and the betatron wavelength X& are held
constant, and the detuning is given by Eq. (13). It then
is a consequence of the scaling relation of Eq. (11) that
the e-folding length L remains invariant. Note that since
the wiggler's natural focusing has the dependence Xp—yo, as the energy increases it is necessary to use exter-
nal focusing of the electrons, e.g. , from ions, to keep Xp

constant.
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