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QCD Plasma Parameters and the Gauge-Dependent Gluon Propagator
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We derive the Ward identities that determine the gauge dependence of the QCD dispersion relations
obtained from the ordinary gluon propagator in a certain class of gauges. These identities hold for com-
plex structure functions at both zero and finite temperature. A direct consequence of our analysis is that
the gauge dependence of the gluon-plasma damping constant obtained in recent one-loop calculations is
due to an inconsistent approximation scheme.
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At high temperatures and pressures, hadronic matter
is thought to undergo a phase transition to a deconfined
plasma phase consisting of weakly interacting,
deconfined quarks and gluons. ' There has been a great
deal of controversy in recent years, however, concerning
the stability of this plasma against external perturba-
tions. This controversy has been triggered in part by
the gauge-fixing dependence of the gluon-plasma disper-
sion relations at the one-loop level. Although all one-
loop calculations yield the same lowest-order plasma fre-
quency for both the transverse gluon mode and the spa-
tially longitudinal plasmon mode, the rate at which the
plasma oscillations are damped seems to be gauge-fixing
dependent, both with respect to magnitude and sign.
Despite the fact that there exist arguments concerning
the need to incorporate higher-loop corrections, much of
the controversy has focused on the correct definition of
dispersion relations in hot QCD. In particular, several

groups have proposed dispersion relations derived from
modified, manifestly gauge-fixing-independent gluon
propagators. In these formulations gauge dependence of
the propagator, and hence of the related dispersion rela-
tions, cancels algebraically order by order in the loop ex-
pansion. As well, calculations based on color-electric
and -magnetic correlation functions have been motivated
in part by the apparent gauge-fixing dependence of the
damping constant. It is worth noting, however, that
these modified approaches still do not agree on the value
of the one-loop damping constant. Pisarski, on the oth-
er hand, has stated that the physical poles in the ordi-
nary gluon propagator would be gauge independent if
calculated accurately.

The purpose of this Letter is to clarify the issues raised
in the above controversy by deriving a set of generalized
Ward identities that govern the gauge dependence, in a
wide class of gauges, of the QCD propagator and hence
of the QCD plasma dispersion relations. The derivatio.
of the identities is nonperturbative and does not distin-
guish between zero and finite temperature nor between

real and imaginary parts of the structure functions.
Given certain additional assumptions that will be made
explicit in the following, the identities imply the gauge-
fixing independence of the physical poles in the gluon
propagator in the class of gauges considered here. At
this level, our discussion simply generalizes earlier claims
concerning gauge-fixing independence of the poles based
on the S matrix"' or on renormalization-group argu-
ments, neither of which are immediately applicable at
finite temperature.

In the context of the gluon plasma, the identities ex-
plain the gauge-fixing independence of the lowest-order
plasma frequency and imply that the gauge-fixing depen-
dence found in one-loop calculations of the damping con-
stant will be absent in a self-consistent perturbative cal-
culation. Thus it follows that the previously mentioned
perturbative modifications to the gluon propagator are
unnecessarily complicated from the point of view of
gauge-fixing dependence, although it may be convenient
for other reasons to consider them. It should be noted
that the proof does not establish the stability of the per-
turbative vacuum nor the validity of perturbation theory
in general. It does, however, show that claims of the
breakdown of standard perturbation theory at finite tem-
perature made purely on the basis of one-loop calcula-
tions are premature.

In order to derive the desired identities, and to illus-
trate their general nature, we temporarily use the con-
densed notation of DeWitt' in which p' denotes the
complete set of fields in a theory, and the index i includes
all continuous and discrete labels of the fields. The sum-
mation convention then also implies integration over the
space-time variables with appropriate measure. We
henceforth denote functional differentiation with respect
to the field p' by a comma with appropriate indices.
Consider an arbitrary gauge theory with action S[p] and
gauge invariance under bp'=D,'[p]8g . A compact
equation for the generating functional of connected func-
tions for this theory, with complete gauge-breaking
terms, is given by

exp(iWF[J]) =„I Sp[p]Det(F', ;[&]Dtt[p])exp(i[S[P]+ —. rt pF'tp]FP(p]+ J,p']) .
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The gauge-fixing conditions F'[((&] are arbitrary func-

tionals of the quantum fields such that the Faddeev-
Popov operator matrix F';[((&]D&)[(b] is invertible. Note
that background field and pure axial gauges are not

directly implementable by gauge conditions as in Eq.
(1); their inclusion requires special attention, and will be
discussed separately. ' '

An arbitrary, infinitesimal change hF in the gauge-
fixing condition can be absorbed by a gauge transforma-
tion of the path-integral variables of the form'
=D,'lg]Q'(&l(t)]&F~[P], where —0'&) is the inverse of the
Faddeev-Popov operator. It then follows that under

these variations the change in the generating functional
comes purely from the source term, so that '

D„,(k) =aA„,+t.' " +P(n„k„+k„n,)+6 (7)

with n„=P„,n', P„,=g„, k„k,—jk being the projection
operator with respect to four-momentum, and

since the corresponding gauge generators are field depen-
dent. Indeed, even the Abelian fermion self-energy is, in

general, gauge-fixing dependent due to the field depen-
dence of the fermion gauge generator.

Returning to the case of non-Abelian Yang-Mills
theories, we now restrict the discussion to the class of
gauge theories in which the momentum-space gluon

propagator can be decomposed as follows:

d W[J]—= WF+gF [J]—WF [J]= —J;AX'[J],

where

A p „=Pp „np n y/n

0 0

0 —8;i+k, k, /k

hX'[J] =(D.'[(t&]Q'pl(t)]AF~[(t)]) . (3)

where

(5)

((t&'), and—we have used the fact that 8&'/BJ&, =D'4.
Note that it is not necessary here to distinguish between

zero and finite temperature: At zero temperature, ()
denotes the vacuum expectation value of time-ordered
products, while at finite temperature, it denotes the
thermal average.

We now consider the case of the Yang-Mills theory by
replacing the generic field (()' by the Yang-Mills vector
potential A„'(x), and the generator of gauge transforma-
tions is simply the covariant derivative operator D,

Dpb ~phd„gf, b, A„'. Her—e [a,b = 1, . . . , X] repre-
sent color indices, while lp, v=0, 1,2, 3] represent space-
time indices. Assuming global color symmetry and

translational invariance, we can neglect the color indices
and go to momentum space, so that Eq. (4) implies

gD""(k) = DP (k)M—' &, (k) —hX"q(k)D '(k), (6)

where b' AX", =b(D,",QdhF )/8Ab These are the .de-

sired Ward identities governing the gauge-fixing depen-
dence of the gluon propagator in gauges that can be
unambiguously implemented by a generating functional
of the form given in Eq. (1).

In the Abelian case, ~",(k) a:k" because D" (I" is

field independent. In any linear gauge the photon self-

energy is purely transverse, so that Eq. (4) can be used''

to derive the well-known result that the photon self-

energy is gauge independent to all orders. No such sim-

ple conclusions can be drawn in the non-Abelian case,

The change in the propagator D'~=8 W/8J;HAJJ under

an arbitrary change in F at J=0 is obtained by
diff'erentiating both sides of Eq. (2) with respect to the
external source:

pDij ~i D mj ~j Di m

and the proper self-energy,

«p « k"k'II"=IIP"+~, +@(n"k'+n'k")+A

The result is

(12)

with

D(p)+A
X k

~(o)+@

X k
D(p)+A

k +II+C(p)+g
(14)

X(k) —=k + II+@+n k2 ~(o)

, D(p)

(a(,)+e) '
15

D(p)+A

In Eq. (15) we have used the fact that the parameters

&(o), C(o&, and D(p& satisfy Bfp) C(p)D(p)/n k2. It is

clear that apart from kinematical factors the physical
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projects out the spatially transverse physical gluon mode.
The matrix n„n„ is also transverse with respect to the
four-momentum k„and orthogonal to A„,. At zero tem-
perature, the above decomposition restricts the (possibly
nonlinear) gauge condition to depend at most on the
momentum four-vector and on one arbitrary, fixed vector
n„At .finite temperature O(3, 1) is broken to O(3) by
the presence of the heat bath whose rest-frame velocity is

n„, so that the gauge conditions can depend at most on

the velocity of the heat bath and derivatives.
One can use Dyson's equation, D„„(k)= (D(p)'"'

+II"") ', to express the structure functions of D"' in

terms of the bare inverse propagator:

«p

(D(()) )"'=k P„„+C(())
n

+8 (p) (n"k '+ n "k") +D (p)
k"k'
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poles in the gluon propagator are determined by the
structure functions 7' and X, whose zeros determine the
dispersion relations of the spatially transverse (plane-
wave) and spatially longitudinal (plasmon) collective
modes, respectively, of the quark-gluon plasma. ' '
Note that at zero temperature, in covariant gauges,
Lorentz symmetry requires a=a, so that there is only
one independent propagating transverse mode. In nonco-
variant gauges a is not necessarily equal to e, but the
Ward identities guarantee that, in general, they will have
the same physical poles, so again there is only one physi-
cal mode. At finite temperature, the structure function e
represents an additional collective "plasmon" mode,
which propagates independently from the spatially trans-
verse mode a.

Projecting Eq. (6) onto the orthogonal matrices A„„
and n„n„respectively, yields the Ward identities that
determine the gauge dependence of the QCD dispersion
relations:

hV (k) = 'T(k—)A"„(k)Lu';(k) =7'(k—)AY(k) (16)

the transverse part of the gluon propagator can have
gauge-fixing-independent poles.

Thus, in using the identities (16) and (17) to examine
gauge independence of poles in the gluon propagator, one
must know something of the structure of h, Y and h,Z.
With this in mind, one can use these identities to make
definite statements concerning the gauge-fixing indepen-
dence of the physical poles in the gluon propagator. It is
instructive to examine first how gauge dependence can be
distributed across different loop orders of the gauge-
independent dispersion relations 'T(k) =0 or X(k) =0.
The identities (16) and (17) necessarily hold order by
order in the loop expansion, even when higher-loop
effects can contribute to the same order in the coupling
constant, as is the case in a high-temperature expansion.
Expanding, for example, Eq. (16),

57'(k) =7'(k)AY(k),

~(p)+7 ())+g(2)+. . .

6Y=6Y(P) +g Y(l ) +6,Y(2)+. . .

and

aX(k) -—X(k)2
n,n "ddt'"g 8(p)+4

n„k ~").
D(p)+A

where the superscripts correspond to any formal expan-
sion parameter, one finds that at lowest order 57'(p)
=7'(p)hY( ). In the loop expansion 7' (k) is gauge in-
dependent, and accordingly hY( ) —=0. Thus, to one loop-=r(k) ~Z(k) . +7 () ) ~ (P)+Y() ) (20)

Thus, as long as the coefficients d Y and dZ of Eqs. (16)
and (17) are well behaved in the neighborhood of the
solutions, the dispersion relations are gauge-fixing in-
dependent: A solution of 7'(k) 0 is also a solution of
(7'+57)(k) =0, and similarly for solutions of X(k)
=0

It should be noted that this proof of gauge-fixing in-
dependence does not cover all zeros in 7' and X. One
must exclude from the proof such zeros which coincide
with poles in 6,Y or hZ, since in this case a cancellation
in Eqs. (16) or (17) may occur. This could result in

gauge-dependent poles such as those found by DeTar,
King, and McLerran' in the electron propagator in
superaxial gauges. However, such gauge-dependent
kinematical poles will generally be exceptional, as the
pole structure of hY and hZ is essentially that of the
ghost propagator [cf. Eq. (3)l. As well, a potential sim-
ple zero of X at k =0 must also be excluded from this
proof, as it may be canceled on the right-hand side of
Eq. (17). It can, in fact, be shown that such a pole can-
cels in the equations of motion of the field strengths. '

Similarly, a zero in L coinciding with that in D(p)+A
must also be excluded due to a cancellation in Eq. (17),
and indeed one can use Eq. (6) to prove that

A(D(p)+A) =2[D(p)+A+ (B(p)+ P)n jk AX t)k~, (18)

so that this zero is, in general, gauge-fixing dependent.
Equation (18) furthermore shows that only the structure
functions a and e of Eqs. (11) and (12) associated with

This equation guarantees gauge independence of the pole
if the loop expansion is a consistent expansion: To the
order of E . (20) the pole will be determined from
7'(P) =0, 7' ') being of higher order, and so the right-
hand side of Eq. (20) vanishes.

However, gauge dependence can appear in the loop ex-
pansion when 7' and '7 ' are of the same order, so
that in Eq. (20) the pole is determined from
'T(p)+7'(') 0. This is the situation of QCD at high
temperature, where a mass of order gT is generated at
one loop which cannot be considered small but instead
sets the scale for the dispersion relation. An explicit cal-
culation shows'' that hY ',hZ(')-O(g T), which in
the context of these identities explains the observed
gauge-fixing independence of the plasma dispersion rela-
tions to order gT, as well as the gauge-fixing dependence
to order g T in a loop expansion.

An illustration of the identities is provided by a recent
calculation of the leading-order gluon damping constant,
where a partial resummation of higher-looE) effects has
been performed in order to ensure that 'T ) =0 at the
plasmon mass. ' The resulting "on-shell" dispersion re-
lations were indeed gauge-fixing independent, as re-
quired by Eq. (20).

In a completely self-consistent expansion scheme one
needs T "+' «T ". In the case of high-temperature
QCD this means such an expansion is not in powers g,
but rather in those powers of g in excess of the powers in
T. In such an expansion the pole structure of h, Y ' and
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AZ ' is essentially that of the (resummed) ghost propa-

gator, ' which does not receive corrections of order

g T, and hence is independent of the poles in 7 and X
describing the collective modes of the plasma. There-
fore, since apart from external ghost propagators h, V and
AZ consist of one-particle-irreducible functions whose
internal propagators are oA' the plasmon mass shell even

if the external momentum is on it, this renders plausible
the assumption that AY and d,Z are well behaved near
the plasmon mass shell k —g T . By this it follows
that in such a consistent resummation the dispersion re-
lations will be gauge-fixing independent. Supporting this
argument, Braaten and Pisarski' have recently shown in

covariant and Coulomb gauges that the complete resum-
mation of loop effects will result to lowest order in

gauge-fixing-independent dispersion relations. The
analysis presented here shows that the plasma parame-
ters will be gauge independent in a self-consistent pertur-
bative expansion in any one of the class of gauges con-
sidered here. Of course, this class does not exhaust all
possible gauge choices; the extension of these considera-
tions to other types of gauges and illustrations of the
identities in specific examples is in progress. ' '
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