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Soliton Solutions to the Gauged Nonlinear Schrodinger Equation on the Plane
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A gauged, nonlinear Schrodinger equation in two spatial dimensions is considered. This equation de-

scribes nonrelativistic matter interacting with Chem-Simons gauge fields. We find explicit static, self-
dual solutions that satisfy the Liouville equation.

PACS numbers: 03.65.6e, 11.10.Lm, 11.15.—q

The gauged, nonlinear Schrodinger equation for the
"matter" field O(t, r) reads

matter current J" acts as a source:

i@8,+(t, r) = ~— ie
V — A(t, r)

2m hc

' 2 J"=(cp,J) = ce*e, . [~ (De') —e'(De)*]
2ml

(3)

+eA (t, r) —g%' (t, r)% (t, r) % (t, r).

Here, we present the equation in its quantum-mechanical
form; hence Planck's constant h =h/2tr occurs. Also, m

is a mass parameter, c is the velocity of light, g governs
the strength of the nonlinearity, and e measures the cou-
pling to a gauge field described by scalar (A ) and vec-
tor (A) potentials. This coupling is gauge invariant: A

gauge transformation of the potentials

A A —Vto, A A +—tl, to,o o

c

accompanied by a phase redefinition of +,
—i (e/bc) co@

(2a)

(2b)

leaves (1) unchanged.
Without gauge fields, e=0, and with the interpreta-

tion that + is a noncommuting quantum-field operator,
(1) is the Heisenberg equation of motion for a second-
quantized description of point particles moving nonrela-
tivistically in 8-function potentials with strength —g.
Moreover, in one spatial dimension and still at e=0,
with the interpretation that % is a classical, c-number
field, (1) possesses soliton solutions and is completely in-

tegrable. Indeed, understanding the soliton structure of
the one-dimensional nonlinear Schrodinger equation was
an important achievement in the complete integrability
program for nonlinear partial diA'erential equations' and
in the semiclassical, nonperturbative quantization of
nonlinear quantum field theories.

Here, we consider the model in two spatial dimensions
and with nonvanishing gauge coupling. The gauge field
satisfies its own dynamical equation, where the conserved

8 F"'+ e"'~F
ti
=——J'. (4)

[We use relativistic notation with the metric diag(1, —1,
—1) and x"=(ct, r), but the form of the modification is

largely determined by current conservation. ] The pa-
rameter tc, with inverse length dimensionality, controls
the Chem-Simons addition and provides a cutoff at large
distances greater than 1/~ tc~ for the gauge-invariant
electric, E = —VA —(1/c) B,A, and magnetic, B=V
XA, fields. [On the plane, the curl of a vector V is a
scalar 5, and the curl of a scalar is a vector: In com-
ponents S e"8;V', (VxS)'=e' AS.] Thus the Chern-
Simons term gives rise to massive, yet gauge-invariant
"electrodynamics. "

The time component of (4) is the Chem-Simons
modified Gauss law:

V. E —aB =ep.

Upon integration over the entire plane, this has the im-

portant consequence that any field configuration with

charge Q =e Jdrp(t, r) also carries magnetic flux
@=fdrB(t, r) given by

l&= ——QK'

The first term in (5) integrates to zero owing to the

8„J" B,p+V J =0.
(D is the gauge-covariant derivative: DO = [V —(ie/
hc)A]O. ) However, the gauge-field equation need not

be of the conventional Maxwell forin: B„F"'=(e/c)J",
F„,—=d„A, —8,A„; in planar physics the Chem-Simons
term provides a possible modification. The most general,
linear gauge-field equation in three-dimensional space-
time reads
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long-distance damping by the "photon mass"
I i~I; as

mentioned above, all gauge-invariant gauge-field quanti-
ties are short range. For the same reason the spatial in-

tegral of 8 converges, but then it also follows that neces-
sarily the gauge-variant vector potential A is long range,
so that the spatial integral of VxA is nonzero. Thus,
charged systems carry a vortexlike magnetic field.

We shall make use of an interesting truncation of the
above planar, gauge-theoretic dynamics, wherein only
the Chem-Simons contribution in the left-hand side of
(4) is retained. This "Chem-Simons electrodynamics"
may be viewed as the

I
a.

I
~ limit of the topologically

massive model. The truncation is physically sensible at
large distances and low energies, where the lower-
derivative Chem-Simons term dominates the higher-
derivative Maxwell term, and the magnetic-electric rela-
tion (6) holds locally in space.

In this Letter, we present static solutions to the
gauged, planar nonlinear Schrodinger equation, when

the nonlinear coupling g takes a particular, natural value
related to the gauge coupling. Gauge-field dynamics is

provided by the field-current identity, which is all that is

left of (4) when the Maxwell term is dropped:

tion for +, which also follows from the Hamiltonian,

0= dr&,

ih8, e(t, r) = (i 2)
W '(t, r)

Static solutions, s for which the Hamiltonian evidently
is stationary, obey

0='—Q
2

D'+eA' —g(e*e) e.
2m

To find them, we first observe the identity

I D+ I'=
I (Dl ~iD, )+ I'~ —Vx I+ gq *q .

h hc

I De I' —+(e*e)'
2m 2

where A (but not A ) occurs in 'P through the covariant
derivative, and is expressed in terms of p=+*@through
(10a) (with the gauge function to absorbed in the phase
of +). One verifies that (1), supplemented by (10), may
be presented as

pl PF = JPe
2

(7) Therefore, in view of (9a), the energy density /it is

(i4a)

Equations (1) and (7) also follow from the Lagrange
density,

e"'PA„F,—ij+i h+ 8, +—A

I (D~+iD2)%'I + —Vx Jh . 2 h
2m 2

2

(e'~) '.
2 2mcv

(i4b)

I
De I'+L(e'e)'h

2m 2

Consequently, with g = T e h/mcx, and sufficiently
well-behaved fields so that the integral over all space of
Vx J vanishes, the energy is

The gauge-field variables in (1) can be expressed, with

the help of (7), in terms of the matter variables: After
(7) is presented in components,

2 h

dr I (D|~ iD2) ~ I'
2m 4 (i4c)

B =e"8;A'= ——p,
e
K'

E' = —il;A ——8,A' = e"P,1; e

chic

(9a)

(9b)

This is non-negative and vanishes —thus, attaining its
minimum —when 0' satisfies

D)+ = T- iD2+. (isa)
The self-dual character of this equation is recognized
when it is written as

we recognize that the potentials are given by D+= T-iDx~. (15b)
e

A (t, r ) =Vco(t, r )+V x —„dr' G (r —r') p(t, r'), (10a)

A'(t, r) = — B,to(t, r)—1

c

We shall henceforth make the above choice for the
strength g of the nonlinearity; as will be indicated below,
this is in fact a very natural choice.

To solve (15), we note that when + is decomposed into
its phase and amplitude

—Vx dr'G(r —r') J(t, r') .
cx " (lob)

& (e/h c ) cu l /2 (i6)

Here G is the Green's function for the Laplacian,
V G(r) =8(r), and co is an arbitrary gauge which may
be removed by redefining the phase of the matter field +.
Therefore, (1) is a self-contained, highly nonlinear equa-

A =Vapo+ Vx lnp.
hc
2e

(i7)

Equation (15) implies that the vector potential is given

by
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With (9a), or equivalently (10a), this shows that, away
from the zeros and poles of p, lnp satisfied the Liouville
equation, all whose solutions are known,

e2
&2lnp = +. 2 p.Ace.

quires a singular contribution at r =0 from lnp:

hc; r"' 211A' =8;co ~ e'~—n —1—
e r 1+(ro/r) '"

hc; r"'
8;ai~ e"—(In I

—1).
r 0 e r

(22)

The spatial current (3), which is given by the London
ansatz involving AT, the transverse part of A,

The singularity is removed when we chose co= ~ (hc/
e)( I n

I

—1)8, and so the field profile is

J = — pAT,
e

N1c

here equals, according to (17), (19a)

(i9a)
@( ) ~ i((n (

—i)e

Jar
rp r+
r rp

' n —
1

(23)

J=+ Qxp.
2pp1

(19b) We now see that I n I
must be an integer for single-

valued O'. For this solution the charge is

The surface-term contribution to the energy is

~(h/2) drVxJ=(h /4m) drV p

4nIn Ie
4 a

and so the flux is

(24)

This, indeed, vanishes for sufficiently well-behaved Vp.
One may explicitly verify that the second-order equa-

tion (13) is solved by the above self-dual, first-order sys-
tem, which evidently provides a first integral for (13),
corresponding to zero energy.

The Liouville equation possesses nonsingular solutions
with non-negative p when the numerical constant on the
right-hand side of (18) is negative. Hence, the sign
must be chosen opposite to that of x.. The matter density
that solves (18) is

p(r) =—4 If'(z) I'
a li+ If(z) I'3' ' (20)

r =(r cos8, r sin8), z =re' .

Here a is the dimensionless constant a =e /hc
I

ic
I

and f
is an arbitrary function.

When p vanishes, lnp is singular and so is V lnp,
which according to (17) contributes to the magnetic
field. Nevertheless, the complete magnetic field will

remain nonsingular, because co in (17) can be chosen to
be discontinuous, so that singularities in VxVro cancel
those of -t (hc/2e)V lnp. However, since the modulus
of ~ is p'~ and the phase is co, discontinuities of ai must
be quantized so that + remains single valued when zeros
of p' are encircled.

For example, the most general radially symmetric and
nonsingular solution to the Liouville equation involves
two parameters, n and ro,

2hc

IxI e
(25)

Note that the flux quantum, e4/hc, is an even integer.
We postpone to another, longer publication further

discussion of this system. Here, we conclude with two
comments.

(A) Viewed as a quantum-mechanical equation for the
operator field +, the gauged, nonlinear Schrodinger
equation provides a second-quantized description for
nonrelativistic point particles interacting with a Chern-
Simons gauge field, and also with a b-function potential
arising from the cubic nonlinearity in (1). However,
since the magnetic field of a point source is a 8 function
[see (9a)), this additional interaction may alternatively
be viewed as occurring because the point particles pos-
sess a magnetic moment. One finds that the special
value for the nonlinear coupling that renders the system
self-dual corresponds to the minimal moment of a spin-

particle.
(B) Recently, there have been found topological6 and

nontopological solitons in a gauged Klein-Gordon equa-
tion. %hen the field potential is sixth order and of spe-
cial form, the solitons obey self-dual equations. The soli-
tons in our nonlinear Schrodinger equation correspond to
the nonrelativistic limit for the nontopological solitons of
the Klein-Gordon model.

This work is supported in part by funds provided by
the U.S. Department of Energy.

' n fl 2
4np(r) =
ar

+
r ro

(21)

This vanishes for large r, and is nonsingular at the origin
for

I
n I
) 1, but for I n

I
& 1, the vector potential ac-
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