Soliton Solutions to the Gauged Nonlinear Schrödinger Equation on the Plane

R. Jackiw^(a)

Department of Physics, Columbia University, New York, New York 10027

So-Young Pi^(b)

Rockefeller University, New York, New York 10021 (Received 21 March 1990)

A gauged, nonlinear Schrödinger equation in two spatial dimensions is considered. This equation describes nonrelativistic matter interacting with Chern-Simons gauge fields. We find explicit static, selfdual solutions that satisfy the Liouville equation.

PACS numbers: 03.65.Ge, 11.10.Lm, 11.15.-q

The gauged, nonlinear Schrödinger equation for the "matter" field $\Psi(t,\mathbf{r})$ reads

$$i\hbar\partial_{t}\Psi(t,\mathbf{r}) = \left\{-\frac{\hbar^{2}}{2m}\left[\nabla - \frac{ie}{\hbar c}\mathbf{A}(t,\mathbf{r})\right]^{2} + eA^{0}(t,\mathbf{r}) - g\Psi^{*}(t,\mathbf{r})\Psi(t,\mathbf{r})\right\}\Psi(t,\mathbf{r}).$$
(1)

Here, we present the equation in its quantum-mechanical form; hence Planck's constant $\hbar = h/2\pi$ occurs. Also, *m* is a mass parameter, *c* is the velocity of light, *g* governs the strength of the nonlinearity, and *e* measures the coupling to a gauge field described by scalar (A^0) and vector (**A**) potentials. This coupling is gauge invariant: A gauge transformation of the potentials

$$\mathbf{A} \to \mathbf{A} - \nabla \omega, \quad A^0 \to A^0 + \frac{1}{c} \partial_t \omega , \qquad (2a)$$

accompanied by a phase redefinition of Ψ ,

$$\Psi \to e^{-i(e/\hbar c)\omega}\Psi, \qquad (2b)$$

leaves (1) unchanged.

Without gauge fields, e=0, and with the interpretation that Ψ is a noncommuting quantum-field operator, (1) is the Heisenberg equation of motion for a secondquantized description of point particles moving nonrelativistically in δ -function potentials with strength -g. Moreover, in one spatial dimension and still at e=0, with the interpretation that Ψ is a classical, *c*-number field, (1) possesses soliton solutions and is completely integrable. Indeed, understanding the soliton structure of the one-dimensional nonlinear Schrödinger equation was an important achievement in the complete integrability program for nonlinear partial differential equations¹ and in the semiclassical, nonperturbative quantization of nonlinear quantum field theories.²

Here, we consider the model in two spatial dimensions and with nonvanishing gauge coupling. The gauge field satisfies its own dynamical equation, where the conserved matter current J^{μ} acts as a source:

$$J^{\mu} = (c\rho, \mathbf{J}) = \left[c\Psi^*\Psi, \frac{\hbar}{2mi} [\Psi^* (\mathbf{D}\Psi) - \Psi (\mathbf{D}\Psi)^*] \right],$$

$$\partial_{\mu} J^{\mu} = \partial_{t} \rho + \nabla \cdot \mathbf{J} = 0.$$
(3)

(**D** is the gauge-covariant derivative: $\mathbf{D}\Psi = [\nabla - (ie/\hbar c)\mathbf{A}]\Psi$.) However, the gauge-field equation need not be of the conventional Maxwell form: $\partial_{\mu}F^{\mu\nu} = (e/c)J^{\nu}$, $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$; in planar physics the Chern-Simons term provides a possible modification. The most general, linear gauge-field equation in three-dimensional space-time reads³

$$\partial_{\mu}F^{\mu\nu} + \frac{\kappa}{2} \epsilon^{\nu a\beta}F_{a\beta} = \frac{e}{c}J^{\nu}.$$
 (4)

[We use relativistic notation with the metric diag(1, -1, -1) and $x^{\mu} = (ct, \mathbf{r})$, but the form of the modification is largely determined by current conservation.] The parameter κ , with inverse length dimensionality, controls the Chern-Simons addition and provides a cutoff at large distances greater than $1/|\kappa|$ for the gauge-invariant electric, $\mathbf{E} = -\nabla A^0 - (1/c)\partial_t \mathbf{A}$, and magnetic, $\mathbf{B} = \nabla \times \mathbf{A}$, fields. [On the plane, the curl of a vector V is a scalar S, and the curl of a scalar is a vector: In components $S = \epsilon^{ij}\partial_i V^j$, $(\nabla \times S)^i = \epsilon^{ij}\partial_j S$.] Thus the Chern-Simons term gives rise to massive, yet gauge-invariant "electrodynamics."

The time component of (4) is the Chern-Simons modified Gauss law:

$$\nabla \cdot \mathbf{E} - \kappa B = e\rho \,. \tag{5}$$

Upon integration over the entire plane, this has the important consequence that any field configuration with charge $Q = e \int d\mathbf{r} \rho(t, \mathbf{r})$ also carries magnetic flux $\Phi = \int d\mathbf{r} B(t, \mathbf{r})$ given by

$$\Phi = -\frac{1}{\kappa}Q.$$
 (6)

The first term in (5) integrates to zero owing to the

long-distance damping by the "photon mass" $|\kappa|$; as mentioned above, all gauge-invariant gauge-field quantities are short range. For the same reason the spatial integral of *B* converges, but then it also follows that necessarily the gauge-variant vector potential **A** is long range, so that the spatial integral of $\nabla \times \mathbf{A}$ is nonzero. Thus, charged systems carry a vortexlike magnetic field.

We shall make use of an interesting truncation of the above planar, gauge-theoretic dynamics, wherein only the Chern-Simons contribution in the left-hand side of (4) is retained.⁴ This "Chern-Simons electrodynamics" may be viewed as the $|\kappa| \rightarrow \infty$ limit of the topologically massive model. The truncation is physically sensible at large distances and low energies, where the lower-derivative Chern-Simons term dominates the higher-derivative Maxwell term, and the magnetic-electric relation (6) holds locally in space.

In this Letter, we present static solutions⁵ to the gauged, planar nonlinear Schrödinger equation, when the nonlinear coupling g takes a particular, natural value related to the gauge coupling. Gauge-field dynamics is provided by the field-current identity, which is all that is left of (4) when the Maxwell term is dropped:

$$\frac{\kappa}{2}\epsilon^{\mu\alpha\beta}F_{\alpha\beta} = \frac{e}{c}J^{\mu}.$$
(7)

Equations (1) and (7) also follow from the Lagrange density,

$$\mathcal{L} = \frac{\kappa}{4} \epsilon^{\mu \alpha \beta} A_{\nu} F_{\alpha \beta} + i \hbar \Psi^* \left[\partial_t + \frac{i e}{\hbar} A^0 \right] \Psi$$
$$- \frac{\hbar^2}{2m} |\mathbf{D}\Psi|^2 + \frac{g}{2} (\Psi^* \Psi)^2. \tag{8}$$

.

The gauge-field variables in (1) can be expressed, with the help of (7), in terms of the matter variables: After (7) is presented in components,

$$B = \epsilon^{ij} \vartheta_i A^j = -\frac{e}{\kappa} \rho , \qquad (9a)$$

$$E^{i} = -\partial_{i}A^{0} - \frac{1}{c}\partial_{i}A^{i} = \frac{e}{c\kappa}\epsilon^{ij}J^{j}, \qquad (9b)$$

we recognize that the potentials are given by

$$\mathbf{A}(t,\mathbf{r}) = \nabla \omega(t,\mathbf{r}) + \nabla \times \frac{e}{k} \int d\mathbf{r}' G(\mathbf{r} - \mathbf{r}') \rho(t,\mathbf{r}'), \quad (10a)$$

$$A^{0}(t,\mathbf{r}) = -\frac{1}{c}\partial_{t}\omega(t,\mathbf{r})$$
$$-\nabla \times \frac{e}{c\kappa}\int d\mathbf{r}' G(\mathbf{r}-\mathbf{r}')\mathbf{J}(t,\mathbf{r}'). \qquad (10b)$$

Here G is the Green's function for the Laplacian, $\nabla^2 G(\mathbf{r}) = \delta(\mathbf{r})$, and ω is an arbitrary gauge which may be removed by redefining the phase of the matter field Ψ . Therefore, (1) is a self-contained, highly nonlinear equation for Ψ , which also follows from the Hamiltonian,

$$H = \int d\mathbf{r} \mathcal{H} , \qquad (11)$$
$$\mathcal{H} = \frac{\hbar^2}{2m} |\mathbf{D}\Psi|^2 - \frac{g}{2} (\Psi^* \Psi)^2 ,$$

where **A** (but not A^{0}) occurs in \mathcal{H} through the covariant derivative, and is expressed in terms of $\rho = \Psi^* \Psi$ through (10a) (with the gauge function ω absorbed in the phase of Ψ). One verifies that (1), supplemented by (10), may be presented as

$$i\hbar\partial_t\Psi(t,\mathbf{r}) = \frac{\delta H}{\delta\Psi^*(t,\mathbf{r})}$$
 (12)

Static solutions,⁵ for which the Hamiltonian evidently is stationary, obey

$$0 = \left\{ -\frac{\hbar^2}{2m} \mathbf{D}^2 + eA^0 - g(\Psi^* \Psi) \right\} \Psi.$$
 (13)

To find them, we first observe the identity

$$|\mathbf{D}\Psi|^{2} = |(D_{1} \pm iD_{2})\Psi|^{2} \pm \frac{m}{\hbar} \nabla \times \mathbf{J} \pm \frac{e}{\hbar c} B\Psi^{*}\Psi.$$
(14a)

Therefore, in view of (9a), the energy density \mathcal{H} is

$$\mathcal{H} = \frac{\hbar^2}{2m} |(D_1 \pm iD_2)\Psi|^2 \pm \frac{\hbar}{2} \nabla \times \mathbf{J} - \left(\frac{g}{2} \pm \frac{e^2\hbar}{2mc\kappa}\right) (\Psi^*\Psi)^2.$$
(14b)

Consequently, with $g = \mp e^2 \hbar/mc\kappa$, and sufficiently well-behaved fields so that the integral over all space of $\nabla \times J$ vanishes, the energy is

$$H = \frac{\hbar^2}{2m} \int d\mathbf{r} |(D_1 \pm iD_2)\Psi|^2. \qquad (14c)$$

This is non-negative and vanishes—thus, attaining its minimum—when Ψ satisfies

$$D_1 \Psi = \mp i D_2 \Psi \,. \tag{15a}$$

The self-dual character of this equation is recognized when it is written as

$$\mathbf{D}\boldsymbol{\Psi} = \mp i \mathbf{D} \times \boldsymbol{\Psi} \,. \tag{15b}$$

We shall henceforth make the above choice for the strength g of the nonlinearity; as will be indicated below, this is in fact a very natural choice.

To solve (15), we note that when Ψ is decomposed into its phase and amplitude

$$\Psi = e^{i(e/\hbar c)\omega} \rho^{1/2}.$$
(16)

Equation (15) implies that the vector potential is given by

$$\mathbf{A} = \nabla \omega \pm \frac{\hbar c}{2e} \nabla \times \ln \rho \,. \tag{17}$$

With (9a), or equivalently (10a), this shows that, away from the zeros and poles of ρ , $\ln\rho$ satisfied the Liouville equation, all whose solutions are known,

$$\nabla^2 \ln \rho = \pm 2 \frac{e^2}{\hbar c \kappa} \rho \,. \tag{18}$$

The spatial current (3), which is given by the London ansatz involving A_T , the transverse part of **A**,

$$\mathbf{J} = -\frac{e}{mc}\rho\mathbf{A}_{T},\qquad(19a)$$

here equals, according to (17), (19a)

$$\mathbf{J} = \mp \frac{\hbar}{2m} \nabla \times \boldsymbol{\rho} \,. \tag{19b}$$

The surface-term contribution to the energy is

$$\pm (\hbar/2) \int d\mathbf{r} \nabla \times \mathbf{J} = (\hbar^2/4m) \int d\mathbf{r} \nabla^2 \rho.$$

This, indeed, vanishes for sufficiently well-behaved $\nabla \rho$.

One may explicitly verify that the second-order equation (13) is solved by the above self-dual, first-order system, which evidently provides a first integral for (13), corresponding to zero energy.

The Liouville equation possesses nonsingular solutions with non-negative ρ when the numerical constant on the right-hand side of (18) is negative. Hence, the \pm sign must be chosen opposite to that of κ . The matter density that solves (18) is

$$\rho(\mathbf{r}) = \frac{4}{\alpha} \frac{|f'(z)|^2}{[1+|f(z)|^2]^2},$$
(20)

$$\mathbf{r} = (r\cos\theta, r\sin\theta), \quad z = re^{i\theta}$$

Here α is the dimensionless constant $\alpha = e^2/\hbar c |\kappa|$ and f is an arbitrary function.

When ρ vanishes, $\ln\rho$ is singular and so is $\nabla^2 \ln\rho$, which according to (17) contributes to the magnetic field. Nevertheless, the complete magnetic field will remain nonsingular, because ω in (17) can be chosen to be discontinuous, so that singularities in $\nabla \times \nabla \omega$ cancel those of $\mp (\hbar c/2e)\nabla^2 \ln\rho$. However, since the modulus of Ψ is $\rho^{1/2}$ and the phase is ω , discontinuities of ω must be quantized so that Ψ remains single valued when zeros of $\rho^{1/2}$ are encircled.

For example, the most general radially symmetric and nonsingular solution to the Liouville equation involves two parameters, n and r_0 ,

$$\rho(r) = \frac{4n^2}{\alpha r^2} \left[\left(\frac{r_0}{r} \right)^n + \left(\frac{r}{r_0} \right)^n \right]^{-2}.$$
 (21)

This vanishes for large r, and is nonsingular at the origin for $|n| \ge 1$, but for |n| > 1, the vector potential ac-

quires a singular contribution at r=0 from $\ln \rho$:

$$A^{i} = \partial_{i}\omega \pm \frac{\hbar c}{e} \epsilon^{ij} \frac{\hat{r}^{j}}{r} \left[n - 1 - \frac{2n}{1 + (r_{0}/r)^{2n}} \right]$$

$$\xrightarrow[r \to 0]{} \partial_{i}\omega \pm \frac{\hbar c}{e} \epsilon^{ij} \frac{\hat{r}^{j}}{r} (|n| - 1).$$
(22)

The singularity is removed when we chose $\omega = \pm (\hbar c/e)(|n|-1)\theta$, and so the field profile is

$$\Psi(\mathbf{r}) = e^{\pm \iota(|n|-1)\theta} \frac{2n}{\sqrt{\alpha}r} \left[\left(\frac{r_0}{r} \right)^n + \left(\frac{r}{r_0} \right)^n \right]^{-1}.$$
 (23)

We now see that |n| must be an integer for singlevalued Ψ . For this solution the charge is

$$Q = e \int d\mathbf{r} \rho = \frac{4\pi |n| e}{\alpha}, \qquad (24)$$

and so the flux is

$$\Phi = -\frac{\kappa}{|\kappa|} \frac{2hc}{e} |n| .$$
⁽²⁵⁾

Note that the flux quantum, $e\Phi/hc$, is an even integer.

We postpone to another, longer publication further discussion of this system. Here, we conclude with two comments.

(A) Viewed as a quantum-mechanical equation for the operator field Ψ , the gauged, nonlinear Schrödinger equation provides a second-quantized description for nonrelativistic point particles interacting with a Chern-Simons gauge field, and also with a δ -function potential arising from the cubic nonlinearity in (1). However, since the magnetic field of a point source is a δ function [see (9a)], this additional interaction may alternatively be viewed as occurring because the point particles possess a magnetic moment. One finds that the special value for the nonlinear coupling that renders the system self-dual corresponds to the minimal moment of a spin- $\frac{1}{2}$ particle.

(B) Recently, there have been found topological⁶ and nontopological⁷ solitons in a gauged Klein-Gordon equation. When the field potential is sixth order and of special form, the solitons obey self-dual equations. The solitons in our nonlinear Schrödinger equation correspond to the nonrelativistic limit for the nontopological solitons of the Klein-Gordon model.

This work is supported in part by funds provided by the U.S. Department of Energy.

^(a)On sabbatical leave from Massachusetts Institute of Technology, Cambridge, MA 02139.

^(b)On sabbatical leave from Boston University, Boston, MA 02215.

¹For a review, see G. Whitham, Linear and Non-Linear

Waves (Wiley, New York, 1974).

²For reviews, see R. Jackiw, Rev. Mod. Phys. **49**, 681 (1977); R. Rajaraman, *Solitons and Instantons* (North-Holland, Amsterdam, 1982).

³R. Jackiw and S. Templeton, Phys. Rev. D 23, 2291 (1981); J. Schonfeld, Nucl. Phys. B185, 157 (1981); S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48, 975 (1982); Ann. Phys. (N.Y.) 140, 373 (1982); 185, 406(E) (1988).

⁴C. Hagen, Ann. Phys. (N.Y.) 157, 342 (1984); Phys. Rev.

D 31, 2135 (1985).

 5 Because of boost and conformal invariances of our system, time-dependent solutions may be obtained by transforming static solutions; see R. Jackiw, Ann. Phys. (N.Y.) (to be published).

⁶R. Jackiw and E. J. Weinberg, Phys. Rev. Lett. **64**, 2234 (1990); J. Hong, Y. Kim, and P. Y. Pac, Phys. Rev. Lett. **64**, 2230 (1990).

⁷R. Jackiw, K. Lee, and E. Weinberg (to be published).