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Superpositions of Time Evolutions of a Quantum System and a
Quantum Time-Translation Machine
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A method to obtain a superposition of time evolutions of a quantum system which correspond to
different Hamiltonians as well as to different periods of time is derived. Its application to amplification
of an effect due to the action of weak forces is considered. A quantum time-translation machine based
on the same principle, utilizing the gravitational field, is also considered.

PACS numbers: 03.65.Bz

(2)

In this Letter we introduce a new notion: a superposi-
tion of time evolutions (rather than that of states) of a
quantum system. We demonstrate that there exist su-

perpositions of several time-evolution operators U;
which, for a large class of states ~%'), are effectively
equal to a single but very different time-evolution opera-
tor U':

Zc U I+)=-U't+) (1)
l

We show that one can select events for which the proper
way to describe the time evolution of the quantum sys-
tem is by this unitary operator U'. Such superpositions
may lead to unusual consequences as demonstrated by
two examples presented in this Letter. In the first exam-
ple, we show that a suitable superposition of time evolu-
tions due to the action of weak forces is equivalent to a
time evolution resulting from the action of a strong
force. This corresponds to a new method of
amplification. In the second example, we show that a
particular superposition of time evolutions with the same
Hamiltonian but different periods of time is equivalent to
a time evolution for a very different (possibly even nega-
tive) period of time. This provides an example of a new

type of "time-translation machine" which is peculiar to
quantum systems and has no classical analog.

In order for the superposition of time evolutions to
have the form (1) the normalization of the coefficients c,
has to be

e;=l.

We shall use this normalization from now on.
Let us consider a quantum system S evolving for a

period of time T according to a Hamiltonian which de-
pends on a parameter a. The time evolution of a quan-
tum system described by the state

~
+) due to a superpo-

sition of evolutions with Hamiltonians which have pa-
rameters a; is

gc; U(T, a;) ~%') gc;exp —i
l

1 1p+T
H(a; )dt

(3)
We shall show that this superposition may yield,
effectively, a single time evolution corresponding to a
value of the parameter a' which is far out of the range of
ja;):

gc; U(T, a;) ~%')=-U(T, a')
~
4) . (4)

The superposition (3) can be obtained in the following
way. Let the Hamiltonian be a function of a conserved
quantum variable A related to an external system S„
and fa;l be the eigenvalues of the corresponding operator
A. Let the initial state (not normalized) of the external
system S, at time To be ~@l)=P;c; (a;). This will lead
to the following time evolution of the relevant parts of
our combined system:

lp+ T
gc;exp —iJ, H(a;)dt ~0) ~a;).

l

This is not yet a superposition of time evolutions for the
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system S itself. Instead, we have diff'erent evolutions

correlated to different values of A. To obtain the desired
superposition described by Eq. (3) we have to perform a

projection on a particular state of the external system S,.
Indeed, if at the time to+ T an appropriate measurement
is performed on the external system and its resulting
state is found to be I Nq) =(1/JN )Z; I a;), then the su-

perposition (3) describes the corresponding state of our
system. In fact, the superposition of the time evolutions

(3) can be obtained also by preselecting the initial state
of the external system I4~) =g;a; I a;) and postselecting
the state I 4q) =g;p; I a;) provided

a;p,*
Ct'

;a;p,*

As an example, consider a system which experiences a
force in the x direction whose magnitude depends on a

quantum variable A:

(7)

Then the superposition (3) yields at time to+ T the fol-

lowing wave function in the p representation:

+(p, to+ T;[c;j) gc;O(p a; T, to) .—

gc;a;"= (a')" for all k & K . (12)

We shall describe now one of the procedures to construct
the sets [c;j and fa;j which fulfill this requirement.

Consider a quantum system with a variable A which
has a discrete set of eigenvalues [a;j and quantum states

I 4~) and I 4q) such that a' [see Eq. (11)] is far outside
of the range of [a;j. In general, the requirement (12)
with coefficients c; given by Eq. (10) will not be fulfilled
for k ~ 2. Now we shall redefine the variable, the states,
and the system S, itself. The new system will be an en-
semble of N systems identical to the one described above,
the states describing this ensemble will be given by the
products of the above states, and the variable A will be
chosen to be the average of A„, i.e. ,

than any of the a;, its eff'ect on the system is so small
that it can be detected only if we have a large ensemble
of identical systems.

More interesting is the situation when Eq. (9) de-
scribes correctly the wave function of the system for a
finite period of time. A sufficient condition for this to
happen is that the higher-order terms of the Taylor ex-
pansion of both sides of Eq. (9) are approximately equal:

As we shall show, there are sets [c;j and [a;j such that
for a wide range of the initial wave functions %'(p, to) the
superposition (8) is equivalent to an evolution under a
single Hamiltonian with a parameter a' which lies far
outside the range of [a;j:

Qc;e(p a; T) =- e(p— a' T), — (9)

where

a —=~~c;a;. (9a)

If the superposition were obtained by preselecting the
state I4~) and postselecting the state I@2) of the exter-
nal system, then the c; are given by

&e, Ia;&&a, Ie, &

&e, Ie, &

and a' is given by

&e, Ie, &

For sufficiently small T Eq. (9) is correct, in fact, for

any choice of [c;j and [a;j. Indeed, the first two terms of
the Taylor expansion of the right-hand and left-hand
sides of (9) are identical, and for small T the higher
terms may be neglected. Thus, the superposition of
forces a; acting for a short period of time is equivalent to
a force a' acting for the same period of time. The mean-

ing of "short" here is that during this time the state of
the system does not change significantly. Therefore,
even if the eff'ective value of the force a' is much bigger

(13)

l

& n

This yields a new set of eigenvalues [a, j and a new set of
coefficients [c;j but the value a' and the range of the ei-
genvalues of 8 remain unchanged. The corrections to
Eq. (12) for this case, however, are negligible as long as
K«N. Indeed, the left-hand side of Eq. (12) can be
shown to be

It difers from the right-hand side of Eq. (12) only be-
cause of the terms in the polynomial expansion of
(g„A„) in which at least one A„ is repeated. But, if
k «N, the contribution arising from these terms can be
neglected. In fact, Eq. (12) here represents the fact that
fluctuations for a large ensemble are negligible.

An ensemble of N spin- —, particles with identical
states can be replaced, in our procedure, by a spin-N/2
particle in a state for which a given spin component has
its maximal possible value N (in units of —, h). We can,
therefore, illustrate our method using a spin-N/2 parti-
cle as our system. In this case there is no external sys-
tem: The spatial variables of the particle play the role of
the variables of the external system, while its spin com-
ponent in the x direction S plays the role of the variable
A. Consider then a spin-N/2 particle which has been
prepared at time to in the state I @~)= I S~ =N) and at
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time to+ T has been postselected in the state

I 42) =
I S„=N). The directions g, it, and i are lying in

one plane, and ( and it create the same angle 8 with the
x axis. The force on the particle is assumed to be pro-
portional to the value of the x component of its spin
(Stern-Gerlach device): A= S„/N—. Thus, the eigenval-
ues of A are

1.2

0.8

0 4

a;=, i =0, 1, . . . , N,N —2i (i4)

—tan—8 Nt

2 i!(N i)! '—

the coefficients c; are given by Eq. (10),

(S„N I
S„=N 2i)(S—„=N—2i I Sg =N)

(Sq N IS( N)
r

cos 2(8/2)
cos8

(is)

FIG. 1. Superposition of Gaussians centered between —
1

and 1 yields, approximately, a Gaussian centered at the value
3. The solid line represents the left-hand side, and the dashed
line the right-hand side of Eq. (9) for % (p) e ~ ~ ~o", T 1;
a, is given by Eq. (14), and c, is given by Eq. (15) with N-15,
8 70'.

and the "effective" value of the force a' is [see Eq. (11))

(Sq =N
I (S„/N) I Sg =N)

(S„N I S~ N) cos8

When the angle 8 is close to —,
' n the eff'ective force be-

comes very large. Thus, the effect of superposing time
evolutions corresponding to weak forces (I a; I

~ 1) is
equivalent to the egect of a single strong force
(a'=1/cos8). This is a form of amplification which is
peculiar to quantum mechanics; it has no classical ana-
log since it is due to quantum interferences. We hope
that this amplification scheme can have practically use-
ful applications. A realistic proposal for an optical ana-
log of the amplification in the Stern-Gerlach experi-
ment' was recently suggested. For discussion see also
Refs. 3 and 4.

For N large enough the requirement (12) is fulfilled

for a given K with any desired precision. Still, in order
to have our eff'ect for a large period of a time T we have
to make some restrictions on the spatial wave function of
our particles. The wave function in the p representation
4'(p) has to be such that the higher orders in the Taylor
expansion of both sides of Eq. (9) can be neglected. The
requirement on +(p) became weaker for larger N. Or,
for a given 0 (p), the maximal possible amplification in-

creases with N. [It is proportional, approximately, to
JN, see Ref. 3, Eq. (30).] An example of equality (9)
for a Gaussian +(p) =e ~ t, T=1, N=15, and
0=70' is shown in Fig. 1. In order to obtain an ap-
propriate O(p) in practice we can pass our particle
through a slit. It is interesting (in particular, for practi-
cal realization of this method) that the slit can be placed
in any stage of the experiment: before the first filter
which preselects I @~&, before or after the interaction, or
even after the particle has passed through all filters.

In the example presented above we considered a super-
position of time evolutions corresponding to diAerent
Hamiltonians all acting during the same period of time.
%'e shall show now how it is possible to obtain a super-

position of time evolutions corresponding to the same
Hamiltonian acting during different periods of time and
how it can be used for constructing a quantum time-
translation machine.

Again, the basis of the method is that the superposi-
tion of the time evolutions during the periods of time T;
is, effectively, the time evolution during the time
T'=P;c; T; which may be very diff'erent from the range
of jTj:

This equality holds provided the following requirements
are fulfilled. Similarly to Eq. (12) the requirements for
jT;j and jc;j are

gc;T;"=(T')" for al—l k (K. (is)

For an isolated system the time-evolution operator is
U(T) exp( iHT), and the r—equirement on the Hamil-
tonian and the initial state I%') is that the energy distri-
bution diminishes fast enough for large energies. Thus,
for a large class of Hamiltonians and initial states I%')
the superposition (17) with a particular choice of jc;j
and jT;j amounts, effectively, to a single time evolution
toward the past (for negative T') or toward remote fu-
ture (for large positive T').

One of the ways to achieve superpositions of this kind
is to send our system on a journey in a rocket whose ve-

locity, and therefore whose relativistic time delay, is
correlated to a quantum variable. Another procedure is
to surround our system with a massive spherical shell of
radius Ro and then to build a mechanism which will

change the radius of the shell to the value R at time to
and which will bring it back to Ro at the later time
to+T. The mechanism is such that the radius R de-
pends on an external quantum variable. Preselection
measurement before time to and postselection rneasure-
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ment after time to+ T performed on the external system

will produce a superposition of time evolutions corre-
sponding to different periods of the proper time of our
system.

Indeed, the time period T which is defined for an
external observer (say, at infinity) will correspond to
different periods of the proper time T; for the system in-

side the shell. The Newtonian potential inside the shell

yields the following element of the space-time metric:

gpp =1 —26M/c R, where M and R are the mass and
the radius of the shell, respectively. Therefore, the
periods of the proper time T; corresponding to radii R;
are

Zli& IRo&
N

gce ' I%') . (20)

Let us prepare an external quantum system before the
time tp in the state g;c; li) and let us assume that after
the time tp+T it was found in the state (I/JN )g; li)
Then, the time evolution of the relevant parts of the
combined system (our system, shell, and an external
quantum system), shown at the times before t p, before
to+T, and after to+T, is

Zc I
t&' IRo& I +& Xci I

t'&
I R;&e

gc;U; =U'. (21)

Indeed, this is the situation for a system confined in a
box and described by the Hamiltonian (7). It is also the
case of our time-translation machine working on systems
described by bounded Hamiltonians.

This work was supported in part by the National Sci-
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type of a time-translation machine there is another prob-
lem. This machine will succeed to work only very rarely.
We need a particular outcome of the postselection mea-
surement and for any significantly long journey in time
the probability to obtain this outcome is extremely small.
While we believe that the amplification effect described
above can find its way toward practical applications, the
gravitational time-translation machine is a gedanken ex-
periment.

We have demonstrated that it is possible to prepare a
superposition of time evolutions U; which, for certain
states I e), is effectively equal to a very different time
evolution U'. In the two examples which we have dis-
cussed, Eq. (1) is not correct for all possible states of the
system. In the first example, the spatial wave function
has to decrease fast enough for a large x, and in the ex-
ample of a time-translation machine, the energy distribu-
tion has to decrease fast enough for large energies.
However, for certain systems Eq. (1) holds for all states

I @) and then it can be replaced by the operator equation

Thus, after the final measurement is performed on the
external system, the system inside the shell is in a pure
state corresponding to the superposition of time evolu-
tions. If fc;) and fT;l fulfill the requirements (18), and
the energy distribution decreases fast enough for large
energies then, effectively, our system moves [see Eq.
(17)] to the time t p+ T' which may differ significantly
from the time of the external observer tp+ T.

Apart from the technical difficulties of building this
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