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Optical Spectra of Localized Excess Electrons in Alkali Halide Clusters
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Excess electrons attached to small alkali halide clusters give rise to optical-absorption bands whose
characteristics are highly specific to the mode of electron localization. Optical spectra measured by clus-
ter beam and resonant two-photon ionization spectroscopy agree well with predictions of coupled
classical-quantum simulations, and are interpreted in terms of two localization modes: surface F-center
and diA'use surface states.

PACS numbers: 71.50.+t, 36.40.+d

Advances in cluster-beam techniques' and in theoret-
ical methods have recently yielded substantial new in-
formation on the localization modes of excess electrons
in molecular clusters, ' and alkali halide clusters
(AHC). ' In the latter case, several modes of locali-
zation of electrons attached to clusters consisting of n
M+ alkali-metal ions and m X halide ions (m (n)
have been predicted, depending on the composition of the
particular cluster. Experimental evidence for such

structures has been found.
Specifically, in neutral clusters, M„X„—~ (i.e. ,

M„X„:~e ), which have the requisite number of ions
(such as in Na~4CI~3) to form a ftlled cubic microlattice
(2n —l =jx k x l, with j, k, and l all odd integers denot-
ing the number of ions on the edges of a microcrystalline
alkali halide lattice), the excess electron is attached in a
weakly bound surface state (class I). Other M„X„
clusters (where 2n =jxkxi, class II) also form stable
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FIG. ]. (a), (b) Ca]cu]ated spectra for Na2F (at 100 K) and Na4F3, respectively, using the BH potentials. (b) For Na4F3 spectra
ca]cu]ated at ]QQ K (dashed curve) and 50 K (solid curve) are shown. Insets: (a) Contours of the excess e]ectron density (max-
imum contour corresponds to 3.089x]0 'e/a andothe increment between successive contours & 2.56 x]0 ) in the plane of the

a2F molecule, and (b) a snapshot of the equilibrium configuration at 100 K of the Na4F3 cluster, where the large and small balls
correspo nd to F

—
and Na ions, respectively, and the excess electron dlstrlbutlon 1S represented by the small dots- The geometry of

the Na2F c]uster is speciyed by dN. F (3.71+0.11)ao, 8(Na-F-Na) 110.5'+4.0', and the distance between the ]]uorine anion
(large y]]ed circ]e) and the center of the excess electron density dF, =(4.28+0.15)ao. (c) Calcu1ated excess e]ectron spectra for
two conygurations of the anion vacancy [interna] (I), dashed curve; corner (C), solid curvel of Na~sFi7 at 100 K. (d) Ca]cu]ated
spectrum for Na&C] at 10() K, using the FT potentials. Inset: Contours of the excess electron density (maximum contour
4.35 x ]Q 3e/ao, tt 2.724 x ]0 4). The structural parameters are d Naca (4 73 + 0 09)ao, 8(»-C]-») =85 7' + 29'. »d
dcl, =(5.39 ~ 0.08)ao.
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cuboid structures, " with the anion vacancy as a lattice
site in which the excess electron localizes (playing the
role of the missing X ion). This is akin to F-center lo-
calization in bulk crystals; thus we call them surface F
center states. Clusters which do not have the requisite
number of ions to satisfy either of these conditions are
noncubic' with the electron tending to localize on a par-
ticular, weakly bound, M+ ion (class III).

Optical spectroscopy, in conjunction with theoretical
predictions, aAords a challenging test of the theoretical
models and interaction potentials. This Letter reports on
the first extensive, comparative theoretical predictions
and experimental observations of spectra of small e-
AHC systems (n & 33). In particular, calculated spectra
for class-II clusters show two strong absorption bands, in
the ir and in the red, indicative of a corner site of the
electron. For class I only one band is predicted. These
predictions are consistent with experimental results, thus
providing guidelines for the interpretation of experimen-
tal data.

Optical spectra predicted by theoretical simulations
are shown for selected clusters in Figs. 1 and 2. The
simulation method employs the ground-state dynamics
(GSD) version of the time-dependent self-consistent field

method. ' " In this method the coupling between the
excess electron and the ions is evaluated via the ground-
state quantum expectation value of the electron-ion in-

teraction pseudopotential. " Throughout the time evo-
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lution of the system (at 100 K), the ground- and first
three excited-state energies and wave functions are deter-
mined, ' " and used to obtain transition energies and di-
poles along the trajectory of the system. (It was general-
ly found that these first three excited states carried ap-
preciable transition moments. ) Consequently, the calcu-
lated electronic absorption spectra reflect the variations
in transition energies and transition probabilities for the
dynamically generated equilibrium ensemble configura-
tions of the system. "

The Na„F„—~ clusters are produced as described previ-
ously" by laser vaporization of Na metal into a He flow
stream containing approximately 0.01 SF6, the termina-
tion of the flow into vacuum results in a supercooled
cluster beam (estimated temperature 30 & T & 100 K),
which is size-selectively detected by photoionization
time-of-flight spectrometry. Two kinds of spectra (Fig.
3) are obtained: (I ) photoionization spectra (bound

continuum) using one laser scanned across the
above-threshold region; and (ii) photoabsorption spectra,
recorded by the resonant two-photon ionization (R2PI)
technique, using independent excitation (hv~ =1.5-2.6
eV) and ionization (hv2=2. 8 eV) dye lasers. As demon-
strated earlier theoretically and through electron bind-

ing and abundance measurements, " class-I clusters at-
tach the electron in a weakly bound surface state; thus
Na[4F]3 (3 x 3 x 3) and Naq3F~2 (3 x 3 x 5) exhibit a
(continuum) photoionization spectrum above 1.8 eV
(Fig. 3, top). In the near-infrared region, absorption
bands are located by a series of R2PI mass spectra, such
as those shown in Fig. 4 across the 1.2-1.5-eV range.

The computed optical-absorption spectra for Na2F,
Na4F3, Na~sF~7, and Na~CI, shown in Fig. 1, were ob-
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FIG. 2. {a) Calculated spectra for an excess electron sur-
face state in an NaipFI~ cluster at IOO K. Results obtained via

the BH and FT potentials are given by dashed and solid cur~es,
respectively. (b), (c) Snapshots of equilibrium ionic con-
figurations for the NalpFI& cluster, calculated at 100 K using
the (b) BH and (c) FT interionic potentials.

FIG. 3. Optical spectra of the smaller Na„F„—I clusters in

the 1.5-2.5-eV region (n =2,3,4 are shown in separate frames).
The top panel shows the abrupt threshold behavior found for
n =14 (the surface state). Note that in the Na~F3 cluster, the
absorption rises strongly again at low energies (full spectrum
below 1.6 eV was not obtained, but see Fig. 4).
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FIG. 4. Two-color R2PI mass spectra: (a) In the 1.23-1.4-
eV region, only the clusters designated as surface F-center
clusters (i.e., class II, see text) exhibit strong absorption. (b)
By contrast, at 1.48 eV, the noncubic clusters are the stronger
absorbers. Also note that the "two-dimensional clusters" n =2
and 3 are transparent in this region. Note that clusters n =14
and 23 (and to a much lesser extent, IS) are ionized by the
second color alone (2.85 eV), so that no information on these
clusters can be obtained from these spectra.

tained using two rigid-ion models for the interionic in-
teraction potentials; the Fumi-Tosi' (FT) or the Born-
Huang' models, both parametrized to fit, and widely
used in studies of bulk properties of condensed alkali
halides. For both the stoichiometric and Cl -deficient
alkali chlorides both models yield similar results in satis-
factory agreement with experimental data (bond lengths,
vibrational frequencies, and structures). The spectrum
obtained for NazCI [Fig. 1(d)] is in good agreement with
the preliminary measurements of Kappes. ' Further-
more, in agreement with previous results, the calculated
equilibrium geometry of [Na2CI] + is linear, ' with
dg„c~= (4.62 ~ 0.08)ao, and that of NazCI is bent' [see
Fig. 1(d)]. The calculated values of the electron vertical
binding energy, E„cluster reorganization energy (the
diA'erence between the interionic energies of the neutral
and positively charged clusters), E„,and adiabatic bind-
ing energy, E, =E,+E„are(at 100 K) E, =1.36(0.12)
eV, E, = —3.63(0.2) eV (values in parentheses denote
the calculated standard deviation) compared to the ex-
perimental value' E, (expt) = —4. 1+'0.1 eV.

For the small sodium-fluoride clusters the BH poten-
tial is found to give superior energetic and spectroscopic
results to those obtained with the FT potential. This is
not surprising since the FT potential gives a diatomic
NaF bond that is too short and too strong compared with
experiment. For example, for [Na4F3]+ the FT optimal
structure is a linear chain while that for BH is a distort-
ed cube. Similarly, upon electron attachment the
geometries of the Na4F3 clusters are a ring (FT) and dis-
torted cube (BH), resulting in very different energetic
and optical properties. Calculated (using BH) and mea-
sured" values are as follows: For Na F: E, =0.83(0.15)
eV, E, = —3.47(0.15) eV, E, (expt) = —3.85 ~0.15 eV;

for Na3F2: E, =, 1.41(0.15) eV, E, = —3.36(0.13)
eV, E, (expt) = —3.85+ 0. 15 eV; for Na4F3..

=0.80(0.15) eV, E, = —3.27(0.15) eV, E„(expt)
= —3.54+ 0.05 eV. To demonstrate the eAect of tem-
perature on the calculated spectral line shapes we have
calculated the spectrum [Fig. 1(b)] for the Na4F3 cluster
at both 50 and 100 K.

The experimentally observed (see Fig. 3) high-energy
absorption band for the three smallest Na„F„—~ clusters
[and in others, such as n=8 as well, but not in cubic or
noncubic (class III) or clusters] is characterized by peak
position, width, and shape in satisfactory correspondence
with the theoretical predictions. The high-energy band
observed for Na4F3 is symmetrical and tails off strongly
at lower energy, in agreement with the lower-tem-
perature simulation result [Fig. 1(b)], before rising
strongly below 1.6 eV, indicating a second lower transi-
tion in accord with the theoretical predictions and with
the C3,, symmetry of this cluster. Additionally, the com-
parison of the experimental and calculated ionization po-
tential of the Na4F3 cluster, using the BH potentials, and
the modest reorganization energy (0.8 eV), strongly sup-
ports the structure illustrated in Fig. 1(b). The spec-
trum of Na3F2 also exhibits a very sharp band at -2.0
eV. Simulations show that this transition is associated
with the excess electron localized at the site of the halide
deficiency on a two-dimensional ring. (A lower transi-
tion below 1.2 eV is also predicted but not yet found. )

A sensitive test of the theoretical model is obtained for
the surface states predicted for the cubic-ion clusters
(class I), and characterized experimentally by smaller
adiabatic binding energies and instability with respect to
atom detachment. The smallest of this class is Na~4F]3,
whose charged parent, [Na~4F~3]+, has an unusually
stable 3 x 3 x 3 cubic structure. ' In this symmetric
configuration the electron is distributed uniformly
around the cluster. Using the GSD evolution (with the
BH interionic potential, at 100 K) the electron rapidly
localizes, forming a diffuse surface state [Fig. 2(b)].
This process involves a rather small structural distortion
(E, =0.21 eV). The calculated adiabatic binding energy
of the electron is low (E, = —1.81 eV), in excellent
agreement with the experimental value ( —1.88 eV) ob-
tained by photoionization spectroscopy (Fig. 3, top),
which also shows an abrupt threshold indicative of a very
small reorganization energy. The predicted optical spec-
trum consisting of a single very-low-energy absorption
band centered about 0.4 eV [Fig. 2(a)l is very distinct
from that of the aforementioned surface F-center ab-
sorptions (in class-II clusters). (On the other hand, the
FT potential yields a surface state [see Fig. 2(c)] with
F., = —2.22 eV, a much larger structural rearrangement
(E, =1.60 eV), and a spectrum [Fig. 2(a)] inconsistent
with experiment which shows no resonances in the ion-
ization continuum. )

The predicted spectral consequences of diAerent
modes of localization have been investigated for the
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Na~sF~7 cluster (3X3X4), which is sufficiently large so
that it can possess internal, corner (vertex), face, and
edge sites for the excess electron. In the lowest-energy
configuration the electron is bound in an F-center sur-
face state, localized at an anion vacancy at the corner of
the cubic microcrystal with E, =1.33(0.5) eV and

E, = —2.31(0.15) eV [E,(expt) = —2.89 eV; Ref. 8].
Figure 1(c) illustrates the spectral differences between
the corner (C) and interior (I) states, the latter being a
long-lived metastable configuration with E, =1.84(0.2)
eV and E, = —1.34(0.2) eV. The interior state is
characterized by a single broad feature peaking near 2.2
eV [Fig. 1(c)], well below the experimental value for an
F center in a bulk sodium-fluoride crystal' (3.64 eV),
thus emphasizing the importance of long-range interac-
tions. The corner state, by contrast, exhibits a spectrum
very similar to that of Na4F3, indicating dominance of
local symmetry and interactions in determining the na-
ture of such surface F-center states. Similar but distinct
spectra are predicted for other long-lived metastable sur-
face states in which the electron is localized at an anion
vacancy on the edges (E, = —1.85 eV) or on the faces
(E, = —1.61 and —1.49 eV, for the 3 x 3 and 4X 3 faces,
respectively) of the microcrystalline cluster.

In agreement with these predictions, scans covering
the full 1.25-1.6-eV spectral range have revealed
characteristic absorption bands for the larger clusters
(n & 33), except the cubic ions (14 and 23). Figure 4
provides qualitative indications of the distinct charac-
teristics associated with each type of localization mode.
We associate the strong infrared absorption (1.25 eV),
found only for the surface F-center (class II) clusters
(n ) 3, n =4,6, 8,9, 12, 15, 18,20, 24, . . . , see Ref. 8;
values are slightly difTerent for chlorides' ' ) with the
corner-site localization found for Na4F3 [Fig. 1(b)1 and

Na~sF~7 [Fig. 1(c)],although it appears to peak at some-
what lower energy than predicted by theory. At 1.48 eV,
by contrast, the absorption of surface F-center clusters is
much weaker than the noncubic clusters, as is made
clear by comparison with the reference abundance spec-
trum [see Fig. 1(a) in Ref. 8]. No bands are detected in

the 1.2S-2.0-eV range for class-I cubic-ion clusters
(n=14 and 23) or for two-dimensional clusters (n=2
and 3).

It will be of interest to extend the experimental and
theoretical investigations to larger clusters and to F-
center defects at ionic crystalline surfaces, in order to ex-
amine further the suggested characteristic spectral dis-
tinction between bulk, surface F-center, and diA'use sur-
face excess electron states. Additional information can
be obtained from the vibrational spectral shifts associat-
ed with the electron attachment, which exhibit
softening of stretch modes due to partial screening of
cations and stiAening of bending modes in the vicinity of
the excess electron.
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