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Universal Quantization of Curvature Jump at the Roughening Transition
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For a sequence of solvable solid-on-solid models, an exact analysis of the faceting transition is per-
formed. It is shown that the curvature of the equilibrium crystal shape jumps at the roughening temper-
ature with an amplitude given by an integer (~1) multiple of the universal value predicted by
Jayaprakash, Saam, and Teitel. An interpretation of this phenomenon, universal quantization of curva
iure jump, is presented from the viewpoint of the non-Abelian bosonization theory.
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The roughening transition of two-dimensional inter-
faces has attracted much attention. ' For theoretical
analyses, a class of lattice models called solid on solid--
(SOS) models has been introduced. The solid-on-solid

approximation, which neglects bubbles in the bulk and
overhangs of the interface, has been justified from the
fact that the roughening temperature Ttt is well below
the bulk melting temperature. It has been believed that
any SOS model belongs to the Kosterlitz-Thouless (KT)
universality class2 which consists of U(1) models [mod-
els with U(1) symmetry] such as the XY-spin model and

the Coulomb gas. This SOS-U(1) equivalence implies
the following: (1) The free energy of the SOS models
should show the essential singularity at TR , (2) in th.e
high-temperature phase or the rough phase, the height-
height correlation function Q(R) =—((h; —h;) ) (h;
denotes interface height; R i —j) behaves as Q(R)
-A(T)ln

~
R

~
as

~
R

~
~, where the amplitude A(T)

takes a universal value A(TR) 2/n at Ttt [the ln~R~
divergence of Q(R) corresponds to the algebraic decay of
the spin-spin correlation of the U(l) models in the low-

temperature phase, and the value 2/tr to the universal

decay exponent ri = —,
' at the transition temperature

TKT].
The SOS-U(1) equivalence has been confirmed in

several ways. For example, the duality transformations
map the partition functions of the SOS models to those
of the Coulomb gas or XY-type-spin models. Monte
Carlo calculations of the interface width and the
height-height correlation function also support the
equivalence. The most convincing one is provided by van
Beijeren's body-centered-cubic SOS (BCSOS) model,
which allows exact analyses. The model, which is

equivalent to the F-model case of the six-vertex model,
shows the essential singularity at the roughening temper-
ature Ttt. The height-height correlation function Q(R)

at a special temperature in the rough phase has been ex-
plicitly calculated to verify the In (R~ divergence of
Q(R). Although an exact calculation of Q(R) of the
BCSOS model at general T has not been performed yet,
the exact value of the amplitude A(T) can be drawn
from the calculation of the surface stiffness or the curva-
ture tc of the equilibrium crystal shape (ECS) made by
Jayaprakash, Saam, and Teitel. ' In particular, the
universal jump of the ECS curvature IJ.tc 2l/ttkttTtt at
the faceting transition, which was explicitly verified for
the BCSOS model, confirms the amplitude A(Ttt) 2/
tr . This curvature jump has also been observed experi-
mentally. All the existing evidence seems to support
the SOS-U(1) equivalence.

Have we seen a happy end of a story? The answer is
no. In this Letter, we show that there exists a sequence
of SOS models which are not in the KT universality
class. As a result, what we should expect for general in-

terface models is not a single "universal" value of Air,

but universal quantization of Ate with the quantization
unit given by the value of Jayaprakash, Saam, and
Teitel.

We analyze here a series of multistate vertex models
and their equivalent SOS models proposed by Sogo,
Akutsu, and Abe (SAA). ' The (JV+I)-state vertex
model (JV is an integer ) 1) in the series is the one
where each edge variable takes one of JV+ I states
[—X/2, —Ã/2+ I, . . . , JV/2]. We write the Boltzmann
weight for a vertex configuration (ijkl) by w(ij ~

kl).
The model is then characterized by the "charge-con-
servation'* condition: w(ij )kl) =0 unless i+j =k+I.
Under this condition, the number of nonzero vertex
weights is (JV+ 1)[2(A'+ 1) + 1]/3. For example, cases
with iV=1, JV 2, and %=3 correspond to the 6-ver-
tex, 19-vertex (Ref. 13) (see Fig. 1), and 44-vertex mod-

els, ' respectively. The Boltzmann weights [w(ij ) kl)]
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tion symmetry if we put u =)(./2. The free energy for
p=0 has been calculated' to show the essential singu-
lar&ty at k =0.

To obtain the surface stiffness or the ECS curvature,
we should calculate the per-site free energy with fixed
surface gradient p, denoted by f(p), or its Legendre
transform f(rl) =min~[f(p) —rl. p]. From Andreev's re-
formulation ' of the %ulff construction, the ECS
z =z(x,y) (x,y, z are Cartesian coordinates) is given by

FIG. 1. Mapping between configurations of local heights
and those of vertex for JV 2 (19-vertex model). Among 19
possible configurations, only representative ones are shown.
For u 1/2, the Boltzmann weights are given by w(11 l 11)

p()sin(A/2) sin(3X/2), w(11
l
11) posin1 sin(2X), w(10l 10)

-posin'(A/2), w(00l00) p()[sinksin(2) ) —sin2(k/2)], and
w(01 l 10) w(10 l 01) p()sin(k/2) sin(2X) (pp is an arbitrary
normalization factor). Other weights, which correspond to
+ 90'- and 180'-rotated configurations of the ones shown in

the figure, are given through the CPT invariances, w(ij l kl)
-w(ij

l kl) w(ji l
lk) w(kl lij ), and the crossing symme-

try, w(ij l kl) w(jk l li)

are parametrized in terms of the spectral parameter u so
that they satisfy the Yang-Baxter relation to ensure the
solvability. In terms of an auxiliary parameter X which

appears in the actual parametrization, the "crossing
symmetry" is expressed as w(ij l kl;u) w(jk l li;A, —u)
(i i ) Ph—ysic. ally, u represents the anisotropy, and k

gives a temperature scale such that the roughening tem-
perature corresponds to k 0. The crossing symmetry is
related to a 90' rotation of the lattice. Explicit parame-
trization has been given recursively' or by the fusion
procedure. '

Mapping of the vertex model into the SOS model has
been made by a generalization of van Beijeren's map-
ping, called the generalized Wu-Kadanoff-Wegner tran-
formation. ' In the SOS model mapped from the
(IV+ I)-state vertex model, the nearest-neighbor height
diff'erence can take one of the following %+ I integer
values:

h; —h, = —JV/2, —A/2+ I, . . . , X/2.

We simply call the SOS model the (iV+ 1)-state SOS
model. Since the Boltzmann weights are assigned not to
each bond but to each face, the Hamiltonian of the mod-
el is not of the nearest-neighbor pair-interaction type.
The Hamiltonian contains next-nearest-neighbor interac-
tions and four-body interactions' which invalidate the
duality transformation; the argument for the U(1)-SOS
equivalence based on the duality transformation does not
hold for the present SOS model. The vertical polariza-
tion p, and the horizontal polarization p~, of the vertex
model relate to the surface gradient p=(p„p, , ) of the
SOS model. In an SOS model, it is natural to expect a
symmetry with respect to the 90 rotation of the height
configurations. The crossing symmetry assures this rota-

(z) tl'f(p)
r)pi |lpj p p

[f(2) —1]

(Pl, 2 =Px Py )

We calculated f(p) via the (algebraic) Bethe rlnsatz
method for the model. ' In the low-temperature
phase, ' f(p) has the Gruber-Mullins-Pokrovsky-
Talapov-type expansion:

f(p) -f(0)+ y. I p I +~
I p I'

+higher-order terms.

The coe%cients y, and 8 are JV' independent hence,
they are given by those of the BCSOS model. ' The
form (4) confirms the existence of a facet, a region
where )rj=0, around the origin (x,y) (0,0) in the
low-temperature phase of the (JV+ I)-state SOS model.
As T Tn —0, the step tension y, ()0 for T ( TR)
vanishes and the facet area shrinks to zero.

In the high-temperature phase or the rough phase, we
obtain

r

f(p)=f(0)+kaT sin lpl'

+higher-order terms . (5)

To be precise, in (5) [also in (4)] we have calculated
only the case p (p„,0). We believe, however, that (5)
holds for general p due to the isotropy in the rough phase
and also to the invariance of (5) under the crossing
transformation u X —u. Putting u =1(/2 (isotropic
limit) and making T TR+0 (X +0) in (5), we ob-
tain, via (3), the curvature jump at Tn.

Ax =2Ã/eke) Tg .

Remarkably, this is precisely JV' times the value of
Jayaprakash, Saam, and Teitel (the %=I case). We
have thus shown the existence of an infinite series of
SOS models labeled by an integer () 2) which does not

vz(x, y) =f( —vx, —vy),

where v stands for a Lagrange multiplier necessary to fix
the crystal volume. In what follows we consider the nor
malized ECS with v = 1. For x =0 (p =0), we can cal-
culate the curvature tensor x;j [ (tl z/tlx; (Ix ),-p,
x)2=x,y] as the inverse of the stiffness matrix f
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Q(x,y) = ln(x'+y') 't'.2JV
Z2

(7)

To calculate Q(x,y), we work on an equivalent spin-

chain, spin-JV/2 massless Heisenberg-like model, whose

Hamiltonian 'P is given from the transfer matrix of the
(/+1)-state vertex model 'T(u) through Baxter's for-

mula, P —[d ln'T(u)/du]„-0. We use the represen-
tation of spin operators in terms of fermion operators
with JV colors:

g S'=(y') f(o')fy
f.g

(8)

where o' (a x,y, z) is the Pauli matrix, i 6 [1, . . . ,
JV], and f,g E [up, down]. An antiferromagneticlike
structure of the ground state [which gives the maximum

eigenvalue of 7'(u)] requires the fermion system to be
half filled. In terms of the spin-spin correlation function

9;P(g, (') (S'(g)S~(g')), Q(x, 0) is expressed as

Z Z

Q(x' —x,0) 4 g g 9 (g, g'). (9)
Z(' Z

Since relevant excitations are those near the Fermi sur-

face, we can decompose the fermion field into a right one

(yR) and a left one (yL):

y=e ' yL+e ' yR. (10)

The resulting model possesses three kinds of conserved

currents J (J), [J'] ([J']), and [J"] ([J"]),which are
associated with U(1), SU(2), and SU(JV) symmetry, re-

spectively. Expression (8) is then rewritten as

S'(x) =J'(x) +J'(x) + ( —
1 )"G (x),

~here

G (x) =g yg (x)o'y g; (x)+L—R

denotes the mass operator. Accordingly, 5', ~ is given by
J'-J~, J -G, and G-G correlation functions. Through the
non-Abelian bosonization, we have three bosonic fields.
The ground-state spin structure freezes two of these
fields. The remaining field denoted by g is that of the

belong to the KT [or U(1)] universality class. An intri-

guing conjecture which naturally arises is that the se-

quence of universality classes represented by the multi-

state SOS models should exhaust all the SOS models,

predicting that the curvature jump is universally quan
tized in the units of 2/trkg Ttt.

To give an interpretation of the curvature-jump quant-
ization, let us consider the models in the critical limit

(X +0) to which the non-Abelian bosonization
theory is applicable. The curvature jump (6) implies,
through the capillary-wave theory, ' the following

asymptotic form of the height-height correlation function

&(x' —x,y' —
y ) -([h (x',y') —h (x,y )]')

at T = TR'.

SU(2) level-JV Wess-Zumino-Witten (WZW) model,
which was shown on the basis of the renormalization-

group argument; the mass operator is essentially given

by G' tr[(g —g )a']. Working with the WZW field,

the G-G correlation is easily evaluated to give a term
—( —1)««/(g —(') with A 3/(2+ JV). The oscilla-

tory behavior implies that it originates from the antifer-
romagnetic part of the fluctuation, and hence the term
does not contribute to 9; only the ferromagnetic part of
the fluctuation contributes to Q. Recalling that the
WZW model possesses a symmetry with respect to the
change g —g, we see that the J'-G correlations vanish

identically. The remaining J'-JP correlations can be
evaluated from the current algebra:

g;P(g, g') -(J'(g)Jt'(g')&+ (J'(g)J'(g'))

(12)
4n' (g —g')'

Inserting (12) with a-P=z into (9), we obtain (7) (for

y 0) confirming (6).
As was discussed by Zamolodchikov and Fateev, the

current in the WZW model can be written in terms of a
U(1) field plus Z~ parafermion fields. This means that
the SAA model in its gapless regime possesses Z~ sym-

metry in addition to the basic U(1) symmetry. This ad-

ditional Z~ symmetry is the source of the JV-dependent

curvature jump. The Z~ symmetry of the model has

been partly verified by numerical calculation on the
spin-X/2 chain, and by explicit construction of the
modular-invariant partition function for JV 2.

We have thus demonstrated the breakdown of the
SOS-U(l) equivalence; the JV-state SOS model for gen-

eral JV does not belong to the KT [U(1)] universality
class but represents its own universality class. The cur-
vature jump at TR, or equivalently, the prelogarithm fac-
tor of the height-height correlation function at TR is Ã
times the U(1) value. Naturally, one may expect a simi-

lar JV dependence also in the low-temperature phase. In

fact, the interface width shows a nontrivial JV depen-

dence, while the correlation length and the step tension

do not depend on JV. The Gaussian curvature jump
at the facet edge does not depend on JV either, ' which

sharply contrasts with the curvature jump at Ttt. A de-

tailed account of this Letter, including a derivation of
(5), will be published elsewhere.
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