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We consider a “sticky gas” in which collisions between spherical particles are perfectly inelastic. Thus
the two colliding particles conserve mass and momentum, but merge to form a single more massive

sphere. A scaling argument suggests that the average mass of a particle grows as

,20/(2+D)’ where D is

the spatial dimension. In the case D=1 this result is confirmed by numerical simulation.

PACS numbers: 68.70.+w, 03.20.+i, 05.20.Dd, 05.40.+;j

Consider an ensemble of spheres with an average ra-
dius ro at 1=0. At this initial time the spheres are distri-
buted at random in a D-dimensional space with average
separation ag and an average mass mgo. The velocities
have an rms value uo. We suppose that spheres move
freely until they collide, at which instant they merge
forming larger spheres. Mass and momentum are con-
served so that if the mass density of the spheres is uni-
form and constant then m(¢) ~r2(¢). The result of this
ballistic agglomeration is ever larger particles moving
ever more slowly and separated by increasingly greater
distances. How do m(z), u(¢), etc., scale with time?
Does a universal distribution of masses develop as
t—> 0?

This problem provides a simple test case for scaling ar-
guments which are being used in fluid mechanics to ana-
lyze the statistics of the merger of coherent structures
such as vortices"? and thermal plumes.*>* It is also an
elementary analog of astrophysical models of the accu-
mulation of cosmic dust into planetesimals and thence
into planets.> As posed above it is considerably simpler
than either of these applications because the particles
only interact by collision. In the astrophysical context,
gravitational forces are important in the later stages
when the particles become large. And in the hydro-
dynamic case, vortices move by mutual advection. Be-
cause it avoids the complications of Brownian motion, it
is simpler than Smoluchowski’s discussion of colloidal
coagulation.®” Finally, it differs from diffusion-limited
aggregation® because we suppose that after collisions the
aggregates rapidly reorganize themselves into a compact
form with fixed density. Nonetheless, this idealized
model isolates some of the physics involved in these more
complicated problems.

We begin our discussion with a scaling argument
which shows that in D dimensions the average mass of a
particle increases like ¢22/®*2)_ [nitially the “collision
time” 7o is the ratio of the volume per particle to the rate
at which a sphere ““sweeps out” volume:

to=al/uorf " . (1)

This estimate is only valid at ¢t =0, when ag, ro, and ug

are still the characteristic scales of the ensemble.

Now define N(z/179) as the expected number of initial
spheres which have been condensed into a single sphere
at . This is a dimensionless function with a dimension-
less argument and clearly N(0) =1. At ¢t;=sty we have
a new initial condition with scales

a;=N{"ay, my=Nymo, ri=N|"Pr,
2)
u =u0/N||/2, 7 =N](D+2)/2DT0

’

where N1=N(s). The scaling for u, in (2) follows from
the central-limit theorem— the momentum is the sum of
N, random vectors with typical length mouo. Thus, the
expected size of the resultant random momentum is
N.'/Zmouo. Dividing this by the expected mass we obtain
u;=uo/N{".

Now consider 7,=st,=sN "1y, where £=2D/(D
+2). At t; we can calculate the expected size of a parti-
cle using either 1t =0 or t =t =s7¢ as an initial condition.
In the first case, N(1o/t) =N(sN!”%) initial particles
have agglomerated into a single sphere at t,. In the
second case, each aggregate at ¢, is composed of
N(ty/71) =N, particles from ¢,, and each of these con-
tains, on average, NV, initial particles. Equating these
two different estimates,

NGN(s)V8) =N(s)? or N(s)~s°. @3)

Thus, if D=1, the expected mass of a particle grows as
1?3 and if D=3 the expected mass increases as ¢ %/°.
Before we compare these results with simulations in
one dimension we introduce the density function. With
D=1, F(m,u,t)dmdu is the number of particles per
unit length with velocity in the interval (u,u +du) and
mass in the interval (m,m +dm). Thus the number of
particles per unit length and the mass per unit length are

P(1) =j;mdm f_‘:du F(m,u,1),
4)

%}Q =Js dm f_wdumF(m,u,t).

The scaling argument suggests that this density function
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evolves into a similarity form,

F(m,u,t) =Fu,v)/moudt , (5)
where
—-2/3 1/3
m tug u {tuo ]
u=s— | — V= — | —
my ao Uuop ao

In these variables (4) becomes
0
_11_4;] _I; duf_wdvg(y,v) ,

1 =j;md/,1 f:odvu?(u,v) )

The average mass of a particle is (m) =mo/aoP(t) ~t*>
and the particle-weighted average of any function,
glm,u),is

P(t)=L
ao

(6)

J&dm [ = wdug(m u)F(m,u,t)
Jedm 2 wdu F(m,u,t)

so that the similarity theory predicts o2 =((m—(m))?
~l4/3 and urmsE<u2>'/2~t —I/3.

Figure |1 shows the results of numerical simulation of
the one-dimensional case. Initially there were 100000
particles with m =1 equally spaced in 0 < x < 1. The in-
itial velocities were uniformly distributed in the interval

— 1.4+ %). The particles are unconstrained at x=0
and x=1 so they can “escape.” However, a substantial
number of collisions occur before this becomes a prob-
lem. Figure 1 shows that after a transient subsides the
average mass increases as 13, in accord with the scaling
argument. As support for the similarity solution in Eq.
(4) we also show the r%¥? growth of o,. A similar
analysis confirms that the rms velocity is decreasing as
¢ 7' in this scaling regime.

In a second simulation, again with 100000 particles at
t=0, the initial velocities were * + with equal probabil-
ity, while the initial positions were uniformly distributed
in 0 <x < 1. Again, after a transient, there is a scaling
regime in which the average mass increases as t¥3 and
the rms speed decreases as ¢ ~'/3. We also performed
several smaller simulations with 10000 particles using a
variety of initial distributions of velocity and position.
All of these calculations support the hypothesis that
there is a scaling regime as in Eq. (5) and the density
function F(m,u,t) does not depend on the initial condi-
tions.

A detailed examination of the velocity and mass statis-
tics produced by these simulations suggests that in the
scaling regime the density function is

(glm,u))= ,

Pexpl—m/{m)—u?/2u]

(m)Qruiag)'?

(8)

Flm,u,t)=

A proof of this conjecture, if true, is not easy. It is possi-
ble to write down a Boltzmann equation allowing for the
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FIG. 1. (a) Average mass {m) and (b) standard deviation
om in a simulation starting with 100000 particles. The ratio
{m)/on approaches 1 which is consistent with the exponential
density in Eq. (8).

complication of coalescing particles. Direct substitution
of (8) into this equation fails. In fact, the stosszahlan-
satz used to construct the Boltzmann equation is invalid
because of strong position-velocity correlations which de-
velop in the similarity regime.

One indication of these correlations is the distribution
of “clump” sizes. By a clump we mean a group of parti-
cles moving in the same direction which is bracketed on
the left and right by oppositely moving particles. The
size of a clump is the number of particles in it. It is easy
to see that if there are P particles per length and the ve-
locities are uncorrelated then the number of clumps per
length of size s is n(s)=(P/2)(1/2)2. For instance,
what is the probability that a particle is a right-moving
clump of size s=1? With probability + the particle it-
self is moving to the right. If velocities are uncorrelated
then the probability that both its neighbors are moving
to the left is . We conclude that & of the particles are
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in right-going clumps of size 1 and by symmetry i of
the particles are in clumps of size 1. This reasoning is
easily extended to obtain the clump-size density men-
tioned above.

Analysis of several simulations shows that n(s) =(P/
6)(2/3)" is an excellent fit to the clump-size distribution.
Thus, if a particular particle is moving to the left there is
a better than even chance that its neighbors are headed
in the same direction, i.e., velocities are correlated. The
explanation must be that collisions between oppositely
directed particles occur more frequently than between
particles going in the same direction. Unfortunately this
trivial observation does not easily translate into an ex-
planation of the strikingly simple distribution of clump
sizes seen in the simulations.

We emphasize that these correlations are likely to be
pathologies of one dimension and it is possible that a
generalized Boltzmann equation is valid if D= 2. This
requires that the volume fraction occupied by the
spheres, which is a conserved nondimensional quantity, is
small. (Of course, in one dimension this fraction is not
dynamically important.)

As a simple model of the development of fluctuations
away from a boundary we introduce a spatially inhomo-
geneous version of our original ballistic agglomeration
problem. We imagine a “machine gun” that fires bullets
along the x axis. The bullets leave the muzzle at x =0
with mass m at intervals 7. However, the velocities are
random with some pair-distribution function, P(u), so
that there is a well-defined mean velocity «
EfS"u‘P(u)du. The faster bullets overtake and collide
inelastically with their neighbors. Mass and momentum
are conserved by these binary collisions, and the partici-
pants stick together forming clusters. The result is ag-
gregates whose mass increases with distance from the
muzzle. How does the expected mass scale with this dis-
tance x?

The problem is interesting because there is a plausible,
but incorrect, scaling argument with many fluid mechan-
ical analogs. Numerical simulation shows that the hy-
drodynamic scaling is wrong and the alternative is right.

The hydrodynamic scaling argument begins correctly
by observing that both the flux of mass and the flux of
momentum are independent of x and so can be found
from conditions at the muzzle. Thus the flux of mass is
F,=mo/t and the flux of momentum is F, =myi/x.
The incorrect assumption is that at large distances from
the muzzle, where there have been many collisions, the
only properties of the initial conditions that can be im-
portant are these two conserved fluxes and the distance
x. One is asserting that at large x there is a universal
distribution of masses and velocities whose structure is
independent of all details of P(u) except & =F,/F,.°
From the three quantities F,,, F,, and x there is only one
combination with the dimensions of mass: m(x)
~F,,2x/F,,,. This scaling argument is specious and one
clue is that it predicts that the velocity fluctuations are
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FIG. 2. Mass against position in a “machine gun” simula-
tion in which 10° shots were fired at intervals of t=0.1. The
muzzle velocities are uniformly distributed in the interval
(+,%). At this time, t =100000, there are 915 particles.

independent of x. This is because F,/F,, has dimensions
of velocity so that we are forced to the unlikely con-
clusion that after a large number of collisions the veloci-
ty fluctuations become independent of x and of order
Fu/Fom.

A different argument simply replaces time in the ear-
lier relations by x/i and ag by #z. This gives

XU ms(0) ] v

m(x)~mg >
i

/
. 13
Xt ms(0)

U s (X) ~ 1 ;s (0) [

While the hydrodynamic scaling is certainly wrong, it is
not entirely clear that Eq. (9) is right. Figure 2 shows
the results of a simulation in which 1000000 shots were
fired at intervals of 7=0.1. At t=100000 there are 915
aggregates and the x 2 increase of the expected mass is
clear. Remarkably, even at very large distances from the
muzzle there are still particles that have not had a single
collision.
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90ne objection is that if there are no velocity fluctuations at
the muzzle (i.e., all the velocities are equal to i) then there are
no collisions and there is no universal scaling. In reply to this,
one could argue that the development of the universal regime
requires a certain number of collisions. As the initial velocity
fluctuations are reduced, the distance bullets travel before
these collisions take place increases so that in the limit an
infinite distance is required for the universal regime to be real-
ized.



