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Laser Cooling of Atoms in Squeezed Vacuum
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The modification of the statistical properties of the vacuum Auctuations, via quadrature squeezing, can
dramatically change the mechanical manifestations of light on atoms moving in a standing laser wave.
This phenomenon can be attributed to the altered decay rates of the atomic dipole in squeezed vacuum.

PACS numbers: 32.80.Pj, 42, 50.&k

Laser cooling of atoms in a quasiresonant standing
laser wave has been attracting considerable attention
during the past few years. ' Another exciting subject has
been the modification of the statistical properties of the
vacuum fluctuations of the electromagnetic field. Reduc-
tion of these fluctuations in one quadrature phase (90'
out of phase) of the field by almost an order of magni-
tude has been already realized in the laboratory. The
role played by the vacuum fluctuations in the atomic dy-
namics has also been of great interest. Recently, Gar-
diner has shown that the two quadratures of the atomic
dipole decay at different rates when the atom is embed-
ded in "squeezed vacuum, " i.e., broadband light with re-
duced quantum fluctuations in one quadrature com-
ponent. This state can be produced, in principle, by an

optical parametric amplifier with vacuum fluctuations as
an input. It is shown here, therefore, that the mechani-
cal manifestations of light on a slowly moving atom in a
standing coherent laser wave are dramatically modified
when the atom is embedded in such a state. In the fol-
lowing, the physical origin of the optical forces in a
standing laser wave is described and an intuitive model
of the effects in a squeezed vacuum is ofl'ered, the
method for calculating the force is presented and the
modified force is compared to the force in a normal vac-
uum. Finally, the possibility of the experimental
verification of these results is discussed.

A slowly moving atom (k v(I ) in a low-intensity
standing-laser-light wave experiences a velocity-depen-
dent force. This "radiation pressure" force is well un-
derstood in terms of absorption and spontaneous emis-
sion. As first envisioned by Hansch and Schawlow, the
atom experiences an increased absorption of photons
from the laser beam which is shifted closer to resonance
due to the Doppler effect. This velocity-dependent dif-
ferential absorption can provide a cooling force for laser
detunings to the red side of the atomic transition or a
heating force for blue detunings. At high intensity, how-
ever, stimulated emission can change the sign of the
force to a heating force at red detunings and to a cooling
force at the blue side of resonance. ' This stimulated
force (or "dipole force") has been explained within the
framework of the dressed-atom model and equivalently
as resulting from two-wave mixing (TWM). The
TWM resonance appears in pump-probe spectra as a

dispersive line shape (as a function of the probes detun-
ing from the pump). This feature has a width of the
excited-state decay rate I and shows decreased absorp-
tion at probe detunings from the pump closer to the
atomic transition (see Fig. I, trace 8). In this process
the atom absorbs one photon from one wave and emits a
photon into the counterpropagating wave, thus acquiring
a momentum kick of 26k. This process usually requires
high laser intensity; however, it has been shown to occur
at lower intensity when the normal relation between the
dipole decay rate I 2 and the excited-state decay I
(I 2 0.5I ) is modified by the inclusion of phase inter-
rupting events (I 2 & 0.5r). ' This effect is due to the ap-
pearance of the TWM process at lower order in laser in-
tensity, which is closely related to the dephasing induced
extra resonances in four-wave mixing. These resonances,
which originally have been studied by Bloembergen and
co-workers, are induced whenever the normal decay rates
of the atom are modified. Their relevance to the stimu-
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FIG. 1. Probe absorption as a function of its detuning from
a pump tuned 201 to the red of an atomic transition. Trace A,
at low pump intensity the probe sees higher absorption at posi-
tive detuning closer to the atomic transition. Trace 8, in nor-
mal vacuum at high pump intensity the TWM process is in-
duced leading to less absorption for frequency shifts closer to
the atomic transition. Trace C, at the same high intensity as in
trace B but in squeezed vacuum the TWM process can change
its line shape leading to an additional cooling force [Eq. (12),
Ref. 8 with tV 0.1, M 0.33, p tr, and tt =81 l.
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lated force is discussed in more detail in Ref. 6.
Armed with this insight into the connection between

T%M and the stimulated force, it is instructive to inves-

tigate the eAect of squeezing on the T%M process. Gar-
diner has shown that, in general, squeezing the vacuum
fluctuations results in two diff'erent decay rates for the
two quadratures of the atomic dipole, one of which is

larger and the other smaller than the normal I /2 value
in ordinary vacuum. The implications of this result to a
number of nonlinear optical processes have been in-

vestigated. In particular, Ritsch and Zoller and An and
Sargent have studied the aff'ect of squeezing on TWM.
Their calculations imply that the line shape of this pro-
cess becomes phase dependent and can even change to a
"dispersive" line shape with opposite sign (larger absorp-
tion closer to the atomic transition) as demonstrated in

Fig. 1, trace C. This indicates that the stimulated force
can change sign to provide an additional cooling force in-

stead of heating for red laser detunings from resonance.
In order to calculate the forces acting on a slowly

moving atom in a standing wave (k v« I ), the semiclas-
sical treatment of Gordon and Ashkin is adopted. This
procedure yields the average value of the force correct to
all orders of the laser intensity and to first order in the
atomic velocity. It is assumed that the atom is embed-
ded in a broadband squeezed vacuum which is centered

a t'i [5+I M sin(2&)]P
4(2N+ 1+P)

on the atomic transition, so that the squeezed vacuum
appears to the atom as a b-correlated squeezed white
noise. The optical Bloch equations (OBE) for a two-
level atom with a ground state I a) and an excited state

I b) which is embedded in squeezed vacuum are thus
given by

(p,q) = —y(p, b) —I M(p, g)*+Q(D),

(D) = —r(2N+1)(D)+r —2[Q (p, )+ Q(p, b)*l,

where (D) (p„)—(pub), y =r(2N+ I )/2 —i 5, 6 being
the laser detuning from resonance, N is proportional to
the number of photons in the squeezed vacuum, and M is
the degree of squeezing (i.e., the amount of correlation
between the sidebands) given by I M I

~ N(N+ 1),
where the equality holds for maximum squeezing (mini-
mum uncertainty state). Finally, Q =p2iE/h is the
Rabi frequency, where @21 is the dipole moment and
E 2Eocos(k x)e'~ is the laser field in a standing wave.
The force is given by F=aih[Q (p,p) —Q(p, b) ],
where a —ktan(k x) and is calculated by solving the
OBE in the steady state and then by introducing the
first-order corrections due to the atomic motion. This
procedure gives after some algebra the following expres-
sion of the force in squeezed vacuum:

4(l yl
—r'M')Mcos(2y)P+r'(2N+ I)'e(2N+ I —» —2( I yl

' —r'M'»'
r(2N+ I +P) '(

I y I

' —r'M')e av (2)

where 4=2N+I —2Mcos(2&) and p=2@l Q
I /(I yl—I M ) being the modified saturation parameter. It is

instructive to examine the new expression of the force by
comparing it to the force in ordinary vacuum. In this
limit (N M 0) the force is reduced to the well-known
expression of the force [Ref. 4, Eq. (18)] given by

F= —aAh,
P 1—

1+P
I (1 P) —2I yl P—

I (I +P) I y I

av (3)

Note that in the normal vacuum limit the first term in
the numerator of the velocity-dependent part of Eq. (2)
is zero while the other two terms are reduced to those of
Eq. (3). The striking appearance of the additional term
in squeezed vacuum is analogous to the result of Ref. 6.
In this case, the introduction of classical phase noise re-
sults in the appearance of an extra term—4I yl-'(r, /r —0.5)P (r. =r/2+I „where r, is the
rate of the phase interrupting events). This term can
give the stimulated force usually given by —2 I y I'P at
lower intensity when I ~/I )0.5 as phase noise is added.
Notice that when 12/I &0.5 this term can also be in-
duced but with opposite sign. This is indeed the case
with quadrature squeezing, which can result in either

larger or smaller phase noise than the vacuum level.
This in turn introduces two diff'erent decay rates for the
two quadratures of the atomic dipole. One of these, I 2„
=I (N+M+0. 5), is larger and the other, 12,. =I (N
—M+0.5), is smaller than the normal I i=I /2 value.
Therefore, the sign of the extra term in Eq. (2),
4(l yl

-' —I M-')Mcos(2&)P, can be controlled by the
relative phase p of the driving field with respect to the
squeezed vacuum. This modification of the force can be
further correlated with the TWM line shape which be-
comes strongly dependent on the laser phase p and can
even change sign as shown in Fig. 1, trace C. The physi-
cal implications of these results indicate that the stimu-
lated force cannot only occur at lower laser intensity, it
can change sign to provide an additional cooling force at
red laser detuning from resonance.

Other important modifications of the force in squeezed
vacuum are described by the term A+I M sin(2&). This
term gives rise to a force at zero detuning as well as
strong variations of the force at small detunings [A & I M
xsin(2&)]. These eff'ects can be understood by noting
that the dephasing-induced line shape of TWM at reso-
nance is absorptive in normal vacuum, but it can be
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FIG. 2. The velocity dependence of the spatially averaged
force, in normal vacuum trace 3 and squeezed vacuum trace 8,
obtained by numerical solution of the OBE. The dashed lines
are the result of the analytic solution. The parameters used for
this figure are h, —3I, 0 1.36I, I" 10' Hz, and k 5890
A for both traces and N 1, M J2, and ri 0 for trace B.

FIG. 3. The spatially averaged force as a function of the
laser phase p for increasing amount of correlation between the
sidebands: Trace A, M 0 (thermal light no correlation);
trace B, M 0.5; trace C, M 1; and trace D, M J2 (max-
imum squeezing). Other common parameters used are

—3I, 0 1.5I, and N 1.

transformed to a dispersive line shape in squeezed vacu-

um, giving rise to a force at resonance. In addition, it

has been shown that the TWM can have subnatural
linewidth at. small detuning. '" This indicates that one
can obtain arbitrarily large cooling forces at small detun-

ing as the number of photons in the squeezed vacuum N„
and therefore the amount of squeezing, is increased.
This can be understood by noting that I 2, . =I (N —M
+0.5) in the limit of N » I and maximum squeezing be-

comes arbitrarily small, I 2, . =I"/SN.
In the analytic solution shown above the force is calcu-

lated only to first order in velocity (i.e., a linear velocity
dependence is assumed), this is correct only for small ve-

locities k v((I. The numerical solution of the OBE,
however, can provide the full velocity dependence of the
force. This solution' is shown in Fig. 2 for ordinary
(trace A) and squeezed vacuum (trace 8). This figure
demonstrates that the stimulated force which gives a
heating force in normal vacuum for velocities on the or-
der of k v & I /2 (as expected from the TWM line shape,
Fig. I, trace 8), can be transformed to a cooling force in

squeezed vacuum. The dashed lines in the figure are the
results of the spatially averaged analytic solution which
show good agreement with the numerical solution at
small velocities.

Figure 3 demonstrates the interesting dependence of
the force on the driving laser phase p [using the analytic
solution Eq. (2) with k v=t/2l. This is shown for a
constant number of photons in the squeezed vacuum,
N =1, but for various values of the squeezing parameter
M. Trace 2 plots the force for thermal light M=0 (i.e.,
no correlation between the sidebands) with no variation
on the phase, as expected. Traces B-D, ho~ever, show

large variations of the force with the laser phase for in-

creasing degree of squeezing up to the maximum value

of M lM =N(N+ I )). This dependence is due to the
different amount of phase noise that the induced dipole
sees at a different quadrature phase. Figure 3 also shows

that even a modest amount of squeezing can induce large
effects on the force.

Figure 4 demonstrates the dramatic difference of the
intensity dependence of the spatially averaged force, for
normal (trace A) and squeezed vacuum (traces 8 and

C), showing that the force continues to increase with
laser intensity in squeezed vacuum while it saturates and
changes sign to a heating force in ordinary vacuum.
Note that, even for small N, the force in squeezed vacu-
um can reach a value more than 2 orders of magnitude
larger than the maximum value of the cooling force due
to radiation pressure force in ordinary vacuuin hkI/2.
Moreover, the force increases monotonically as the
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FIG. 4. The spatially averaged force as a function of the
laser intensity at h, —0.5I: Trace A, in normal vacuum;
trace B, squeezed vacuum N 2, M J6, and p 0.985; trace
C, larger squeezing N 10, M 4110, and P =0.985.
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amount of squeezing increases (trace C). Note, howev-

er, that only the average force is calculated here; the
fluctuations of the force give rise to diffusion of the
atomic momentum which increases the equilibrium
temperature of the laser-cooled atoms. Since in normal
vacuum the fluctuations of the force at high intensity are
dominated by the fluctuations of the stimulated force, a
modification of the diffusion of momentum due to the
squeezed-vacuum fluctuations is to be expected. If these
fluctuations can be kept small, laser cooling of tivo-leuel
atoms below the Doppler limit, kbT=AI /2, can be
achieved. This will be an important addition to the new-

ly discovered cooling mechanisms of multilevel atoms. '

As to the experimental verification of these interesting
phenomena: Although 90% squeezing has already been
achieved in the laboratory, it is important to note that
the calculation presented here is carried out with the as-
sumption that the atom is embedded in squeezed vacu-
um. In practice, the output of present sources of
squeezed light (degenerate parametric oscillators) can
couple only to part of the 4ir sr enveloping the atom. A
possible solution to this problem has been proposed by
Parkins and Gardiner" who suggested coupling the
squeezed modes to the atom in an optical cavity of small
dimension. The other important assumption here is that
the spectrum of the squeezing is much broader than that
of the atomic transition. Theories which include a finite
bandwidth of squeezing'' have shown that the essential
features due to squeezing are preserved, even for a band-
width of squeezing only a few times larger than the
width of the atomic transition. In addition, the results
here indicate that even a modest amount of squeezing
can produce pronounced effects on the force.

In conclusion, this Letter demonstrates that the reduc-
tion of the quantum fluctuation of the vacuum by quad-
rature squeezing can profoundly modify the mechanical
manifestations of light. In particular, the stimulated
force can change sign to provide a cooling force much
larger than the maximum radiation pressure force in

normal vacuum. This interesting phenomenon can, in

principle, be observed experimentally, however, its poten-
tial for laser cooling depends on the behavior of the force
fluctuations in squeezed vacuum.
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