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Becchi-Rouet-Stora-Tyutin Cohomology of Compact Gauge Algebras
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We discuss the Becchi-Rouet-Stora-Tyutin (BRST) cohomology of compact Lie algebras and their
infinite extensions in gauge theories. The co-BRST operator is used to construct a BRST-invariant
operator F, the zero modes of which are in one-to-one correspondence with the BRST cohomology.
Nontrivial solutions to the BRST cohomology conditions diAering only in ghost content are shown to ex-
ist. A possible connection with supersymmetric topological quantum theories is observed.

PACS numbers: 11.30.Pb, 02.20.+b
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This operator is nilpotent:

n-=0.

It acts in the state space of the ghosts, which is repre-
sented by polynomials in the ghost variables c':

n
(A)l/f= ~ C . . C iltla, - a„

1, =0 kt
(2)

the states y
"' of ghost number k taking values in some

representation space of Q. The ghosts (c',b, ) and the
BRST operator are self-adjoint with respect to the

The essential property of supersymmetry, in both rela-
tivistic' and nonrelativistic applications, is that its
generator can be considered as the square root of the
Hamil tonian:

[g,g ] =H,

where Q is the supercharge and H is the Hamiltonian of
the supersymmetric system. The braces denote graded
Poisson brackets in classical mechanics, or an anticom-
mutator in quantum mechanics.

It is known that the Becchi-Rouet-Stora-Tyutin
(BRST) operator' n may in a similar way be viewed

as the square root of an invariant operator W (the
BRST-extended quadratic Casimir operator) of a Lie
algebra. '" The BRST cohomology is then defined by
the zero modes of this operator W.

Consider a compact Lie algebra g with n generators
G„a=1, . . . , n:

[G Gp] if prGt

Introducing ghost variables (c',b, ) with canonical
brackets

[c',bp] =Sp,

we can define the BRST operator (for reviews, see, for
example, Refs. 9-13)

indefinite inner product '

n' =G'b. + c'f, p'b, bp,
—n =0

n is referred to as the co-BRST operator. The anti-
commutator of n and n defines a BRST- and co-
BRST-invariant extension of the quadratic Casimir
operator of the Lie algebra 0: '"

W=[n, n j =G,'-+ghost terms. (3)

Indeed, the nilpotence of n and n together with the
Jacobi identities imply

[n, W]=O, [n', W]=O.

The analogy between Eq. (3) and the supersymmetry
algebra (1) is obvious.

The cohomology of 0 is defined as the set of equi-
valence classes of states which are BRST invariant while
diftering only by a BRST transformation:

with

v- v'-v'= v+ &x.

(t)), y) =~ [dc" dc']y')it.

In addition, there also exists a positive-definite scalar
product

(tt, )tt) =(P *s), ttt)

n
1 )(t )a) ap (/;)

k
tata, a, &)=ok ~

where *p is the dual of t)) in the sense of the Hodge star
operation, and P denotes the reversal of the order of the
ghosts in y, Eq. (2). With respect to this scalar product
the ghost c' and its momentum b. are not self-adjoint,
but conjugate to one another. Then the BRST operator
is not self-adjoint with respect to the scalar product, but
we obtain instead
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W|[i =0,
which holds if and only if y is BRST and co-BRST in-

variant:

Ay=0, 0 @=0.

To prove this, it suffices to observe that

(y, Wy) =(ny, ny)+(n'y, n'y),

(6)

showing that W is a positive-definite operator and that it
has a zero mode only if conditions (6) are satisfied.

From the properties of A, A and W it follows that
any state y[c] can be decomposed into a BRST exact, a-
BRST coexact, a-nd a BRST harmo-nic stale:

y=to+ ng+n p, (7)

where co is BRST harmonic. This property is known as
the Hodge decomposition theorem. '

The decomposition theorem implies that there is a
one-to-one correspondence between the cohomology
H(n) and the harmonic states. To see this, note that
Eq. (7) implies

ny=nn p.
But then the condition of BRST invariance, Ay=0,
leads to

for arbitrary g. This space is denoted by H(n):

H (n ) =Ker n/I m n .

The space H(n) is usually interpreted to define the

physical states of a system subject to first-class con-
straints with the algebra Q. ' '-' In the present case
this system is a quantum gauge theory restricted to spa-
tially constant configurations.

Following a standard terminology, BRST-invariant
states y are called BRST closed, and BRST-transformed
states (such as ng) are BRST exact. Every BRST-
exact state is closed, but the inverse is not necessarily
true. Nonzero elements of H(n) correspond to nonex-

act closed states. By definition, BRST harm-onic states
are zero modes of W,

states y[c] which satisfy

G, y[c] =0, and Z, y[c] =0.
Here

X if p'cPby

defines a representation of 5' in the space of ghosts. The
proof of the conditions (8) is obtained by writing out W:

W=(n+ n')'= —. G'+ —, (G.+Z.)"-.

Being a sum of squares of Hermitian operators, W can
vanish only if the terms vanish separately, as implied by
Eqs. (8).

The first condition (8) states that the states y
" must

be 5' invariant. This reproduces the first-class con-
straints on physical states. The second condition reads,
in components,

y (A)
fa[a)ya) a~le=0 ~

where the square brackets denote complete antisymme-
trization over the enclosed indices. This equation states
that the zero modes y'" of ghost number k are given by
all invariant antisymmetric tensors of rank k, including
the trivial ones with k =0 or n. Note that for semisimple
Lie algebras a nontrivial solution always exists for k =3,
in the form of states proportional to the structure con-
stants:

(3)
~&P)' J &Pr~ &

where g is any G singlet. This follows from the Jacobi
identity. Other solutions may exist, depending on the
algebra. Thus we have established that the BRST coho-
mology of semisimple Lie algebras is nontrivial and that
several copies of the physical Hilbert space of states may
exist in BRST-quantized gauge theories, differing only in

the ghost number of the states.
Extension of these results to infinite Lie algebras con-

nected with gauge theories in (d+1)-dimensional
space-time is possible. We only present some of the
more relevant equations here. Introducing ghost opera-
tors c'(x, t),b, (x, t) with an equal-time anticommutator

(n'y, n'y) =(y, ny) =0.
Hence the BRST-coexact state n'p must vanish, and

tc'(x, t), bp(y, t)] =Spy (x —y),
we can construct the generators

Z.(x, t) = if.p'c"(x, t)b, (x—, t),

(10)

It follows that any BRST-closed state is equivalent to a
BRST-harmonic state modulo a BRST-exact state. In
the language of field theory this is expressed by the state-
ment that one can always choose a gauge in which a
BRST-invariant state is also co-BRST invariant.

Using the decomposition theorem and the equivalence
between the BRST cohomology and the zero modes of
W, we can prove the following result.

All BRST cohomology classes are represented by

which define a representation of the infinite-dimensional
Lie algebra

[Z.(x, t), Zp(y, t)] =if.p'Z, (x, t)b (x —y) .

This representation is anomaly-free with respect to a
ghost vacuum state

~ 0)sh such that

b.(x, t) ~0)sh =0.
This choice is consistent with Eq. (10) and allowed be-
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cause the b ghosts anticommute with themselves. It is a

natural choice in the %'eyl gauge 20=0, in which posi-

tivity of the Hamiltonian in the extended state space is

thereby respected. The BRST cohomology contains
gauge-singlet states subject to the condition

which has in addition to the trivial solution y[c] —
~ 0)sh

with ghost number zero also nontrivial solutions analo-

gous to (9):

y[c] =
, f.itr—„dx[c"(x,t)c~(x, t)c'(x, t)] ~0)gh ~g).

Here ~g) is any gauge-singlet state with respect to the
other degrees of freedom.

A diA'erent but potentially interesting situation occurs
in d=l if we have chiral ghost vacua, as in the light-
cone gauge 8+ =0 when

b (z) ~0, +) =0, c (z) ~0, +) =0.
Here c+(z) denotes the positive-frequency part of c(z),
while b+(z) denotes the non-negative frequency modes
of b (z). Then the loop algebra (11) picks up a
Schwinger term and becomes a Kac-Moody algebra. In
the BRST construction the central charge of the ghosts
is now canceled by a contribution from the unphysical

gauge sector, which has the opposite sign. (The necessi-

ty of this result was noted in Refs. 17 and 18.) After
normal ordering with respect to the field operators and
the Kac-Moody generators, the generalized quadratic
Casimir operator becomes

W = — dx [:G,(x):+:[G,(x) +Z, (x) ] ': —i:c'(x)8, b. (x):] .

Observe that the integrand of W is a linear combination
of two Virasoro currents constructed according to the

Sugawara prescription and a Virasoro current corre-
sponding to a ghost energy-momentum tensor.

Finally, we return once more to the similarity between

the BRST algebra (3) and supersymmetry, Eq. (I). The

analogy is complete for theories in which the Hamiltoni-
an is identical to W. This is a consistent choice, since W

is positive definite. For such theories the Hamiltonian is

BRST exact and coexact:

(12)

Hence the Hamiltonian is BRST equivalent to zero, and

no dynamics results for the physical states. This is pre-

cisely the situation one encounters in topological field

theories. ' For the class of topological quantum theories
(12) the full identification of BRST invariance with su-

persymmetry seems possible. Remarkably, reinterpret-
ing the operator II as the supercharge, the algebra (12)
is precisely the algebra of the zero modes of the con-
straints of a supergravity theory. Thus we expect a rela-
tion between supergravity and theories with local BRST
invariance. -'
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