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Wave-Number-in-Cell Simulation of Weak Langmuir Turbulence
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A wave-number-in-cell code was developed for simulation of a model proposed by Uedenov, Gordeev,
and Rudakov for studying weak Langmuir turbulence. The model uses a %'KB approach for describing
the Langmuir wave field. Theoretical results for damping of ion acoustic ~aves caused by resonant in-

teraction of Langmuir waves with group velocity around the sound speed were confirmed. Simulations
corresponding to an initial condition with an intense wave burst demonstrate a formation of almost sta-
tionary localized cavities of intense wideband self-trapped Langmuir wave fields. These cavities have
features in common with phase-space vortices.

PACS numbers: 52.35.Mw, 52.35.Ra

8,F(x, x., t)+ F8„F(x,tr, t)
—

~ 8„n(x,t)8„F(x,tc, t) =0,

8,'n(x, t) —8„'n(x, t) -8„' I F(x, tr, t)dx, (2)

where the present study is restricted to one spatial di-
mension. Physically fF der can be interpreted as a wave
action density, while n denotes the bulk plasma density.
In this physical model F(x, a, t) denotes the density of
wave packets at position x at time t with central wave
number tr. These wave packets (or quasiparticles) are in

the WKB limit propagating in a plasma with varying in-
dex of refraction caused by the varying density n(x, t),
and their orbits are consequently perturbed. Gradients
in density give rise to an effective "force" ——,

' 8„n(x,t)
acting on the wave packets, see Eq. (1). The spatially
modulated wave field will in turn perturb the plasma if
the wave intensity is sufBciently large. A gradient in

wave intensity will thus act on the light component of the
plasma, i.e., the electrons, by ponderomotive forces. The
resulting electron displacement gives rise to an ambipo-
lar electric field, which subsequently also sets the ions in

motion, and a perturbation of the bulk plasma density
results. This process in the quasineutral limit is account-
ed for by the term on the right-hand side of Eq. (2).

The normalizing quantities in Eqs. (1) and (2) are L
for length, T for time, —,

' nom/M for density, (to~/vT)
x (m/3M) ' for wave numbers, and —', J3(novTm/to~)
x (vT/to~)(m/M) ' for the distribution function of wave
action density, where m/M is the electron-to-ion-mass
ratio, m~ is the electron plasma frequency, no is the un-
perturbed plasma density, and vT=(3T, /m)'t is the

A simple model for describing Langmuir turbulence
was proposed by Vedenov, Gordeev, and Rudakov' on
semi-intuitive grounds. In normalized form the equa-
tions are

electron thermal velocity. The ion component is assumed
to be cold. The system of Eqs. (1) and (2) does not pos-
sess any characteristic length or time scale, so the only
constraint on L and T comes through L/T (m/M)'t
x vT/v 3. A characteristic length scale is imposed by the
initial condition. With the present normalizations a
wave packet will have a group velocity vg Kvrlto~
equal to the sound speed C, (T,/M)'t for a normal-
ized wave number x K(m/M)'t to~/vT43 1, where K
is the unnormalized wave number. The WKB assump-
tion in (1) will be satisfied in the limit of L ~ for all
plasmon wave numbers x, except for a set of zero mea-
sure where x 0.

Equations (1) and (2) can also be derived as a limit-

ing case of a general formalism based on the so-called
Zakharov equations, where, in particular, the dispersive
term in the equation for the high-frequency Langmuir
waves corresponds to the mixing of waves propagating
with different velocities, i.e., different wave numbers x.,
in Eq. (1).

A laboratory experiment by Michelsen, Pecseli, and
Rasmussen on the interaction between electron plasma
waves and ion acoustic waves was interpreted by analyti-
cal results based on Eqs. (1) and (2).

Equation (1) is formally identical to the Vlasov equa-
tion where the self-consistent force is derived from a dy-
namic equation (2) for the driven sound waves instead of
the usual Poisson equation. Important features of (2)
are the homogeneous solutions, "free sound waves, "
which give rise to correlations between widely separated
regions of space.

The set of Eqs. (1) and (2) were solved numerically by
a procedure similar to the one used in collisionless plas-
ma simulations. Thus a "wave-number-in-cell" simula-
tion was developed for the self-consistent movement of
quasiparticles as described by their position x and
respective wave number x, according to the characteris-
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FIG. l. ( ) Time evolution of plasma density and (b) p fFd~ for the case where the initial condition consists of an intense wave
burst. The time difference between curves is ht 0.7854. A wave-number-position space of the quasiparticles at (c) t 2.3562 and
(d) 1 7.0684.

ties of (1). The integral in (2) is obtained in each spatial
grid point, and the equation is solved by fast Fourier
transform in the spatial variable using periodic boundary
conditions. A smoothing of small scale variations by a
filter as, e.g. , 4 (n; ~+2n;+n;~~), ~d n I;«„allows the
simulations to be performed by a modest number of
simulation particles, which would otherwise give rise to
an enhanced noise level due to particle discreteness.
There is no phase change in the signal associated with
this filtering. Standard methods are used for the propa-
gation of quasiparticles.

~ith the code we verified theoretical results' for
damping and growth of ion sound waves caused by reso-
nant interaction of quasiparticles, a process very similar
to Landau damping and growth. An equilibrium solu-
tion to (1) and (2) is n 0 and F=Fp(r) Solutions of.

the dispersion relation

1 ~- Fp'(~)
u —1 —

II& dx.
2 ~ K' —u

(3)

with u —= 0/K, are compared with results from the
simulations for the case where Fp(x) =A(2xh)
xexp[ —

—,
' (tr —xp) /5]. The symbol f denotes the usu-

al Landau contour of integration, while Fp'(Ir)
dFp(x)/dx Only those—solutions c.lose to the sound-

wave branches u =1 were considered. Deviations from2=
the theoretical curves are due to difficulties in creating
consistent initial conditions which require F = —, n
x Fp'(K)/(x —u ). The difficulty is due to the random-
number generators which are used to set up the initial
distributions of quasiparticles. The code is found to be
particularly suitable for describing large-amplitude phe-
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nomena. Figure 1 sho~s the evolution of density n and
the corresponding variation of p =fF—dtr as functions of x
for different times. Initial conditions were n(r =0) 0
and p=0. 1 in an interval [0,0.4L], where L is the length
of the system. Initially F is chosen to be a Gaussian with

a standard deviation of 0.075 around x =0.75, i.e., a
characteristic group velocity below C, . The figures con-
tain several of the important features of general results.
The intense wave burst is digging a cavity which traps
parts of the wave field, while the rest is slowly dispersing.
The plasma removed from the cavity escapes in the form
of free sound pulses. Inside the cavity a modulational in-

stability develops. The instability saturates in an array
of density cavities [Fig. 1(a)], filled with a "hot"
plasmon gas [Fig. 1(c)] which maintains an equilibrium
very much similar to the Bernstein-Grene-Kruskal
phase-space equilibria. The figures show clearly a
coalescence of some of these cavities, which is a process
well known for phase-space vortices. Figures like Fig.
1(c) show that the interaction which leads to coalescence
between cavities is mediated by an exchange of quasipar-
ticles. Extending the time duration of the calculations in

Fig. 1, it is observed that the velocity of the cavities go to
zero even if initial burst velocity was close to C, . The
excess momentum is carried away by the sound pulse
and a weak population of free plasmons. Because of the
periodicity of the calculations, the free sound pulses will

eventually catch up with the plasmon-filled cavities.
This interaction left the cavities unaffected in all simula-
tions carried out so far. It should be noted though that
with the initial conditions used, the free sound pulse was
always spatially wider than the cavities and the interac-
tion had the form of a "tidal" effect caused by the sound
pulse. The presence of quasiparticles with x 0, as seen
in Figs. 1(c) and 1(d), is, strictly speaking, not con-
sistent with the WKB approximation inherent in (1) and
(2). However, these particles contribute only a little to
the integral in (2) and this formal inconsistency does not
affect the overall plasmon dynamics.

The results of Fig. 2 demonstrate that Eqs. (1) and
(2) in the linearized limit contain kinetic effects, which
can be understood as effects equivalent to the Landau
damping of sound waves caused by resonant interaction
of plasmons considered as quasiparticles. The simula-
tions for a strongly nonlinear regime as in Fig. 1 demon-
strate that structures evolve which have their analogy in

nonlinear kinetic equilibria in collisionless plasmas. We
also found that the interaction of these structures are
quite similar to that characterizing phase-space vor-
tices Equati. ons (1) and (2) also formally describe the
interaction between broadband electromagnetic radiation
and a plasma. A number of phenomena can be ap-
proached with advantage along the lines of the present
study.
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F'&G. 2. Comparison between simulated results and the cal-
culated dispersion relation for Fo(~) A(2zh) ' exp[ ——,
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velocity u are given by and &, while the imaginary parts
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