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Cosmological Production of Black Holes
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It is argued that, at a first-order phase transition, false-vacuum bubbles may occasionally collapse to
become black holes. If the critical temperature T, is less than a TeV, these black holes, which have a
mass proportional to M(~/T, , could survive until today to be the dark matter. Alternatively, evaporation
of black holes could give rise to relic particle abundances.

PACS numbers: 98.80.Cq, 97.60.Lf

The framework of the standard Friedmann-Robert-
son-Walker big bang, together with a theory of particle
physics, allows us to calculate, at least in principle, the
present contents of the Universe. However, there are
several snags: We do not know the particle physics of
baryon-number violation, nor the particle physics corre-
sponding to dark matter. Furthermore, while accurate
calculations of relic particle abundances can be made, it
is much harder to compute abundances of extended relics
produced at phase transitions.

It is critical to consider any mechanism which at high
temperatures transforms energy from radiation to a form
which redshifts more slowly. For example, suppose that
at temperature T„during the radiation-dominated era, a
fraction fM of the radiation energy is converted to a
form which redshifts like matter. Today this matter will

contribute to 0 =p/p, an amount

Qst =10 [T,./(1 GeV)]fM,

where p is energy density and p, is the value which

makes the Universe critical. At high T, only a very
weak conversion mechanism is required to produce
significant OM. Alternatively, if the conversion mecha-
nism at high T„ is too strong, the Universe will be over-

closed. Examples include the cosmological monopole
problem, which constrains certain phase transitions, and
a limit of about 1000 TeV on the mass of point-particle
candidates for dark matter. In this Letter we give a new

mechanism for primordial black-hole (PBH) production
at a first-order phase transition. It produces PBH's only
rarely, but this may suffice to give the dark matter.

It is an unproven, but widely believed, result in general
relativity that if a mass M is located inside a region of
radius R, ~ 2GM, it forms a black hole. Such a black
hole emits radiation ' with a spectrum similar to a
thermal one of temperature T= I/8trGM. The black-
hole lifetime is therefore r —G M =(10' yr)[M/(10
GeV)]'. PBH's produced with masses less than 10'
GeV will reach a temperature of the Planck mass before
today. The final state of such an exploding PBH is un-

clear; we will not consider the case of PBH remnants as
dark matter.

Could the dark matter be dominantly in PBH's of

mass —10 GeV'? No, they have a temperature today
of about 10 MeV, and the diffuse background radiation
in this region implies 0 ( 10 for such masses.
Furthermore, if the temperature of the PBH's today is

larger than m„ they will emit significant numbers of e
and e+. If our galactic halo were made of these PBH's,
the positrons would slow down in the interstellar medium
and annihilate to produce 512-keV line radiation. We
find that this implies that the halo should be dominated
by PBH's of mass greater than 10 ' GeV. If 0 =1 in
PBH's of mass —10 ' GeV, they will lead to a disuse
background radiation peaking at energies of 0.25 MeV
with a flux of 0. 1 cm s '. This is just below the ob-
served background, and apparently is just unable to ex-
plain the observed feature in the MeV region.

Many dark-matter candidates, monopoles and stable
point particles, for example, are more dangerous in over-
closing the Universe the earlier they are produced. This
is not the case for PBH's. At temperatures larger than
10 GeV the horizon mass is less than the 10 ' GeV.
Hence, prior PBH production is unimportant for dark
matter, unless they can be made to collide and "canni-
balize" before evaporating. We find that significant can-
nibalism does not occur. Consequently, we find that if
PBH's are the dark matter today, the scale of the parti-
cle physics responsible for the phase transition is less (for
our mechanism, much less) than 10 GeV.

Cosmological production mechanisms of PBH's are
not new. Carr showed that the Harrison-Zeldovich
scale-invariant density-perturbation spectrum, which is
commonly taken for the origin of large-scale structure,
leads to PBH formation as the perturbations enter the
horizon. The resulting spectrum of PBH's is a steeply
falling power law, implying an Q((1 in PBH's today.
More interesting from the viewpoint of dark matter is
the mechanism of Hawking, Moss, and Stewart. They
produce horizon-size PBH's at a first-order phase transi-
tion by the unlikely event that many neighboring bubbles
grow to horizon size before percolating. Providing the
phase transition occurs at T, & 10 GeV, the PBH
masses will be large enough to survive until today. Criti-
cally closing the Universe with these PBH's requires a
choice for the bubble nucleation rate. In this Letter we
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~ 3fT=
( )

H(p+p),
C

(2)

where 0 is the Hubble parameter during this era, p is

the pressure, and p is the energy density. The rate at
which vacuum energy is released is equal to the rate of
doing work of expansion together with the rate at which

energy density must be created to fill the increased phys-
ical volume. For p=p=T, , 0=tH ', the era of quasi-
static equilibrium lasts for a time rgsE/tH=B(T, )/T, .

provide an alternative production mechanism, in which

the PBH masses are much less than the horizon mass at
formation, and where the density of PBH's is largely in-

dependent of the bubble nucleation rate.
We illustrate our mechanism in a simple field theory

with a real scalar field p coupled to a Dirac fermion y:

X= —, 8"P8„P+iy(P™)y+p P

+yP ~4 +~Ad,
where all the parameters are chosen to be real and posi-
tive. At high T the vacuum is at (p) =0, while at lower

temperatures this becomes a false vacuum with a true
vacuum appearing for positive (p) =L (T). At the critical
temperature T„ the two phases coexist and are separated
by a transition region in which p interpolates between
the two vacua. The energy per unit area of the boundary
region is the surface tension a=4 . The scale h, is a
function of the parameters of the scalar potential, and is

typically =T, .
At T„ there will be a nonzero diff'erence in vacuum

energy: B(T„)= V(p =0) —V(p = v (T, ) )40. This is

because the vacuum, or bag, pressure tending to collapse
the regions with p =0 is countered by the pressure due to
the fermions being transmitted and reflected from the
boundary. For convenience we take m'«T, and ignore
m' from now on. The fermions have a mass diff'erence

m =av(T, ) across the phase boundary and the fermion
pressure arises from the change in momentum of fer-
mions which are reflected or transmitted at the bound-

ary.
Suppose that bubble nucleation is appreciable at some

temperature Tz which is not very much less than T, . As
the bubbles grow and convert false to true vacuum, we

assume that the released energy reheats the bulk of the
Universe and does not accumulate as domain-wall kinet-
ic energy. Throughout this Letter we assume a mecha-
nism which always maintains the Universe at a single
homogeneous temperature. Finally, we assume that the
temperature reaches T, while the fraction of the Uni-
verse in the true vacuum fT is much less than —'. This
will prevent further bubble nucleation, establishing an
era of quasistatic equilibrium (QSE). Such a phase
transition is of great interest: The transition proceeds
very slowly at a rate governed by the rate of expansion of
the Universe:

Mpi
(3)

After the era of coalescence, further expansion of the
bubbles causes fr to become greater than —,'. The true
vacuum percolates to produce a connected region of true
vacuum containing shrinking bubbles of false vacuum.
We will argue that eventually a few of these shrinking
bubbles will form black holes.

Consider first the idealized situation of a density
na =r, of identical spherical, collapsing bubbles of ra-
dius r(t) Since l fT. =nar, —

fr=r r/e tH. (4)

As the bubbles get smaller, r' must increase in order to
satisfy the condition of quasistatic equilibrium, Eq.
(2). When the bubble walls reach the speed of light,
QSE will be lost and the bubble radius will be
r"=F (T,/m)tH,

Next we consider the case of a distribution of initial
bubble radii about the average r =etH. If the tempera-
ture in the true vacuum during QSE is uniform

throughout the Universe, the rate of collapse of bubbles
will be approximately independent of their size. This of
course neglects surface tension which causes smaller
bubbles to contract slightly faster than larger bubbles.
Therefore, at the end of QSE, while r has decreased to

(T,/m)r (and smaller bubbles have already disap-
peared), a bubble with initial radius r; ) r has only de-
creased to r; —r. As QSE ends, we are left with the bub-
bles on the large end of the size distribution, most of

We consider the case that r~sgtH + I, since in this case
no significant inflation takes place, and for many simple
estimates the expansion of the Universe can be ignored.
In the case that the mass acquired by the fermion cross-
ing the boundary, m =at. (T, ), is less than T„, we find

B(T,)/T, =m /T, , so that this condition is straightfor-
ward to satisfy. The controlled nature of the slow-burn
phase transition allows us to make simple calculations.

When fT approaches —,', bubble collisions become fre-
quent. We assume that at T~ the nucleation rate was
fast enough so that when the bubbles collide they are
sufficiently small that a period of bubble coalescence
takes place. The original scale of the bubbles is erased
and the final scale of the bubbles depends on the dom-
inant dynamics of bubble coalescing. During coales-
cence of two bubbles of size r, bubble walls must move a
distance r in time =rgsE. Bubble-wall speeds are limit-
ed by frictional drag: The transmitted fermions impart a
momentum of order (m/T, ) T, to the wall. This is a
severe limitation, so that bubbles coalesce by settling up
bulk fluid flows rather than having walls move rapidly
with respect to the fluid.

We find that in time igsE bubbles coalesce by fluid
flow up to an average scale r, =F tH, where

' I/3
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which have barely decreased in radius.
After QSE ends, work is done on the bubbles as they

undergo relativistic collapse,

W=P„„AV=[8(T)—P,. „,„]hV. (5)

There are two separate effects which contribute to P„,I.
One is the increase in 8(T) as the temperature falls

beneath T, : 8(T)=B(T,)+8'(T, )(T—T, ). The time
Bt necessary for relativistic collapse of a bubble is at
least Bt )2tH. The corresponding temperature drop will

be

so SB(T)—
~
8'(T, )~ .eT„which we will approximate as

—(5 T, )i. The second contribution comes from the
fact that the bubble walls become increasingly porous to
fermions as they become highly relativistic. Consider the
scattering of fermions from a bubble wall, which we have
idealized as a step-function potential. In this case we

have the following results from elementary quantum
mechanics:

E~) m

E~ & m reflection, dp =2E~,

probability (m/F ~) of reflection,

probability [1 —(m/E~) ] of transmission (with dp =m /2E„) .

Note that these results already indicate that very ener-

getic particles (E~&&m) barely interact with the inter-
face between true and false vacuum. For the extremely
relativistic case, in which the domain wall has a velocity

Pow- 1, we can still apply the results above if we calcu-
late the scattering process in the frame of the domain

wall and then Lorentz transform back to the cosmologi-
cal frame. In the case where yD»1, we find that virtu-

ally all fermions penetrate the wall, and that the momen-
tum change is Ap=m /2E~(1+Pow). The above con-
siderations imply that P,. «,„ in Eq. (5) decreases as the

collapse becomes relativistic. This means that we can
approximate P„„in Eq. (5) by

P„„=(a' T, )~+ T4(m/T, ) '.
The dominant term for small e is the latter, which yields
the following mass formula:

M paH =P„,id V= T( (etH ) (m/T, )

= (5/T, ) (m/T, ) M /T, .

spherical at collapse.
Bubbles which have fractional asphericities greater

than rs/r, at the point of collapse will probably self-
collide, rather than form PBH's. In considering coales-
cence, we calculated the maximum size of bubbles that
could become roughly spherical in a Hubble time. To
understand exactly how spherical such a bubble can be-
come, it is necessary to include the effects of damping on
the motion of bubble walls. During the QSE era, we can
treat an individual bubble as a stationary, nearly spheri-
cal membrane with surface tension a-h, and radius
r =erH. We can now study the damping of an arbitrary
perturbation on our membrane by examining the excited
normal modes. We can characterize a given mode by its
amplitude 6'r and wavelength X. A bubble minimizes its
surface energy by becoming spherical. For fixed 8'r, it is
clearly the longest-wavelength modes (l-r) that are
hardest to eliminate. The equation of motion for such a
mode is

rs rs
ErH T upi

where we drop factors of m/T, from now on. We see
that for high T, (i.e., grand unification scales or higher)
this factor is not extremely small. However, to produce
PBH's which are interesting as dark matter, Eq. (7) re-

quires a much lower T, . This leads to r~/r, &&1, which

can only be achieved for bubbles which are extremely

This, of course, applies only for bubbles with e & t. . Bub-
bles smaller than or only slightly larger than r =etH will

collapse without forming black holes. Bubbles with t. » e

produce heavier PBH. In general, the mass distribution
of black holes formed can be given in terms of the initial
distribution of bubble sizes after percolation.

Given the mass estimate Eq. (7), we can now estimate
how far a bubble must collapse before falling into its
Schwarzschild radius rs. Using Eqs. (3) and (7),

' 2/3

where y is the damping factor and cr+T, br is the
effective mass per unit area (surface tension plus mass

per unit area bulk fluid) to be moved.
The damping factor represents the rate of energy dissi-

pation into the bulk fluid. Each bounce of the membrane
produces a sound wave in the fluid which carries off an

energy per unit area of —T, SrP, leaving the membrane
with kinetic energy —oP . Here P is the velocity of the
membrane when 6'r =0. Since initially T, Br »o, we ex-
pect each succeeding bounce to have a drastically small-
er amplitude than the previous one. This approximation
holds until a-T, Br, which yields 8r/r-rv/r;.

In general, ignoring dissipation, the time scale for a
particular mode to bounce is rb«„«/rQsF (br/r)'
Thus, in the approximation where we treat the back-
ground particles as a bulk fluid, initially roughly spheri-
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cal bubbles (&/r «1) can become extremely spherical.
While this approach is naive, only about 1 in

10 [T,/(I GeV)] bubbles need be this spherical in order
to account for pQf'lgtgaf today.

Interesting consequences may result from PBH pro-
duction even if they evaporate while the Universe is still

hot. Consider a phase transition at T, in which f is the

probability that a false-vacuum bubble collapses to a
PBH of mass Mp~/T, . For f) (T,/Mp~)'~, the PBH's
dominate the energy density of the Universe at a temper-
ature fT„and subsequently evaporate, reheating the
Universe to a temperature Tg = T, (T,/M p~)

' . A parti-
cle X, with mass m~ & T„will be produced in the eva-

poration with a relative abundance
i/2

n~ 1 T,

TR3 g M p)
(10)

where g is the number of degrees of freedom lighter than

T, . This abundance can be large enough to have impor-

tant consequences. For example, X particles might de-

cay out of thermal equilibrium to generate the cosmolog-

ical baryon asymmetry at low temperatures. It is easy to
arrange for TR «mz, avoiding washout of the asym-

metry. This can be used for a baryogenesis scheme

where the L particles are TeV top squarks.
If the X particles are stable, the above abundance may

be larger than the Lee-Weinberg freezeout value, and

may give Q~= 1. For example, for T, =10 GeV, and

f) 10 ', the PBH evaporation could lead to Q~=l,
with L being 50-GeV neutrinos. The reheat temperature
of 10 MeV would be sufficient to give a fresh start to nu-

cleosynthesis.
In this Letter we have considered the collapse of

false-vacuum bubbles in a first-order phase transition
which undergoes an era of quasistatic equilibrium. We
find that, during the initial era of nonrelativistic collapse,
a few bubbles may sphericalize to a sufficiently high de-

gree that the work done on them during the later relativ-

istic collapse can result in their becoming black holes.

The required collapse factor and the resulting PBH mass

are given in Eqs. (8) and (7), respectively. For T, above

a TeV, the PBH are likely to be produced, but are un-

likely to survive until today. Their evaporation may lead
to a production of relic particles. For T, beneath a TeV,
the PBH can be heavy enough to survive until today and,
with even a very small probability of a bubble becoming
a PBH, can give Apqp =1. It is possible that this might
arise in QCD, although we have not studied that case
here. For QCD, if holes survive until today to be the
dark matter, it is likely that they would have a mass
close to the observational bound of 10 ' GeV. To detect
such holes from the particles they evaporate would re-
quire their mass to be very close to the limit. Holes in

the range of 10 -10 GeV, which would occur for
lower T„could be detected by lensing of background
stars. "
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