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We analyze the static spherically symmetric Einstein-Yang-Mills equations with SU(2) gauge group
and show numerically that the equations possess asymptotically flat solutions with regular event horizon
and nontrivial Yang-Mills (YM) connection. The solutions have zero global YM charges and asymptot-
ically approximate the Schwarzschild solution with quantized values of the Arnowitt-Deser-Misner mass.
Our result questions the validity of the “no-hair” conjecture for YM black holes. This work comple-
ments the recent study of Bartnik and McKinnon on static spherically symmetric Einstein-Yang-Mills

soliton solutions.
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Recently, Bartnik and McKinnon have found numeri-
cally a family of soliton solutions of the Einstein-Yang-
Mills (EYM) equations with the SU(2) gauge group.'
This was rather unexpected since many facts suggested
that such solutions did not exist. In particular, neither
the vacuum Einstein equations nor the Yang-Mills equa-
tions have nontrivial static globally regular solutions. 2

In this Letter we show numerically that, similarly to
the globally regular case, the static SU(2) EYM equa-
tions also possess spherically symmetric black-hole solu-
tions with nontrivial Yang-Mills (YM) connection. The
existence of such black-hole solutions is quite surprising.
In the previous studies of the EYM equations in the
black-hole sector, the only solutions which were found
had zero YM curvature. These effectively Abelian solu-
tions are given by the Kerr-Newman metric with the
trivial Coulomb-type YM connection.® It was even con-
jectured that these U(1) solutions are the only solutions
of the EYM equations; i.e., black holes have no non-
Abelian YM hair. Our result shows that this conjecture
was false and the EYM equations have a much richer
structure than the Einstein-Maxwell equations.

Let us point out that our result questions the validity
of the “no-hair” conjecture for YM black holes. This
conjecture, well established for linear matter fields by
uniqueness theorems for the Kerr-Newman black holes*
and nonexistence results of Bekenstein,® states that the
structure of a stationary black hole is completely deter-
mined by global charges defined at spatial infinity such
as Arnowitt-Deser-Misner (ADM) mass, angular mo-
mentum, or electric charge. In the case of colored black
holes, the global YM charges are necessarily zero, so the
ADM mass remains the only global parameter describ-
ing these solutions. The existence of such black holes is
incompatible with the basic idea of the no-hair conjec-
ture, since the YM hair is not associated with any global
charge which would forbid it to be radiated away to
infinity. However, let us admit that so far this does not
constitute a physically serious counterexample against
the no-hair conjecture because the colored black hole
might be unstable and once perturbed it loses the YM

hair ending up as the Schwarzschild black hole. Our
work relies extensively on Bartnik and McKinnon’s study
and we adopt their notation from Ref. 1.

EYM equations and boundary conditions.—Let us
write a static spherically symmetric metric in the form

ds’=—0—=2m/r)e " 2®dt*+ (1 —2m/r) ~'dr®
+r3(do*+sin*9do?) )
where the functions m and & depend only on the
Schwarzschild radius . We want this metric to describe
a nonsingular, asymptotically flat spacetime outside a
regular event horizon located at r=r,. This implies the

following boundary conditions:
(i) Asymptotic flatness requires that as r — oo,

m(r)— M =const and 8(r) — 8y =const. )

(ii) The existence of a regular event horizon at r=ry,
requires that

2m(ry) =ry and 6(ry) < oo 3)

For our purposes it is convenient to put 8(r,) =0 [the
usually used choice 8(e0) =0 is connected with our
choice by simple time-coordinate rescaling].

(iii) Nonexistence of singularities implies that

2m(r) <r for r>ry. 4)

The general spherically symmetric SU(2) connection
is given by®

A=artdt+brydr+ (wt,+dr))dy
+ (cotd 3 +wry —dr1)sinddg (35)

where a, b, w, and d are functions of (r,z) and 7;
(i=1,2,3) are standard generators of su(2) Lie algebra.
This form of connection is preserved by U(1) gauge
transformations,

A'=h " 'Ah+h " 'dh,

where h =explw(r,t)t3]. Using this gauge freedom we
can set b=0. Now, we assume further that the connec-
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tion is static; i.e., a, w, and d depend only on r. In this
case the Yang-Mills equations imply that 4 =Cw, where
C is a constant, so that we can make a further constant
gauge transformation to set d=0. Hence, the general
static, spherically symmetric SU(2) connection is de-
scribed by two functions w(r) and a(r). The Yang-Mills
curvature F=dA+ AAA is given by

F=a'tsdrAdt+w't dr Ad¥
+w'tydr Asindde — (1 —w?) 13d9 Asind dg
+awtydt Ad9 —awt, dt Asind do . (6)

The EYM coupled system is described by the action
1 2 12 g4
== —— — — 7
l67tf(R FH(—g)*d%, @)

where F?=F,F®. The dynamical equations derived
from the action (7) are the YM equations d*F =0 and
the Einstein equations Gg =8nT, Wwith the stress-
energy tensor

T =(1/47) (FocFpag® — ¥ gapF?) . (8)

Before we write down the equations explicitly we shall
make still one more simplification. Namely, we exclude
the electric part of the YM field by imposing the
't Hooft-Polyakov Ansatz a=0. In fact, Galtsov and
Ershov have shown recently’ that assuming suitable
asymptotic behavior the only static black-hole solution
with nonzero YM electric field is the Reissner-
Nordstrom metric with the electric charge e and magnet-
ic charge g:

m=M—(e*+g*)/2r,
)
F=(e/r*)tydrAdt —gr3ddAsinddo ,

where g=0if w=1 or g=1 if w=0. Let us note, howev-
er, that Galtsov and Ershov assume too restrictive falloff
conditions for the electric YM field. Bartnik® pointed
out that, under weaker boundary conditions, there may
exist nontrivial solutions with nonvanishing electric and
magnetic YM fields. The existence of such dyon solu-
tions is currently under investigation. For purely mag-
netic YM fields the EYM equations reduce to the sys-
tem'

le 50 —=2m/r)w'l+e 0 —ww/r2=0, (10)
§'==2wYr, (11)
m'=0=-2m/rw?+ 0 —w??/r?. (12)

Now, let us consider what are the boundary conditions
for the function w(r). The requirement that the local
energy density

dzu=1+ U0 —=w)r*+U=2m/Pdw?/ri=m'/r* (13)

(here u=—T¢) be bounded at »r=r, puts no extra con-

dition on w. We shall assume that w is C' at r=r.
Asymptotic flatness requires that the total energy outside
the event horizon is finite,

M—m(r;,)=47rj:h urldr < oo (14)

which means that w— const as r— oo. Assuming that
w is constant at infinity we can solve Eq. (10) asymptoti-
cally to get

lw|=1—c¢/r, ¢>0. 1s)

For completeness let us note that Egs. (10)-(12) also
possess the trivial solution w=0 with m=M —1/2r and
& =const which corresponds to the Reissner-Nordstrom
metric with magnetic charge g=1. It follows from (6)
and (15) that asymptotically Fy,~r ~', and so the YM
magnetic charge vanishes. Consequently, a solution for
which |w| =1 at infinity is characterized by only one
global parameter: the ADM mass. Thus according to
the no-hair conjecture the only solution should be the
Schwarzschild solution which corresponds to |w|=1,
M =const. We put much effort into trying to prove this
uniqueness but failed. Then, encouraged by Bartnik and
McKinnon’s results, we tried numerical computations
and to our surprise we found the essentially non-Abelian
solutions.

Numerical solutions.— Let us make some a priori ob-
servations about the global behavior of solutions. From
(10) it follows that if w reaches a local extremum at
some radius r then at this point

sgnw” =sgn(w?—1)w. (16)

Hence w cannot have local maxima for w > 1 and local
minima for w < — 1. From (10) we also have

sgnw'(ry) =sgn(w?—1w]|,, . 17)

Since |w(e)| =1, it follows from (17) that |w| <1.
It is easy to show that either |w| <1 or [w|=1. Now,
using (11) and (12), we replace Eq. (10) by

r2(1=2m/rw"+02m—~0—-w?rlw'

+(0—wH)w=0. (10a)

We numerically solve Egs. (10a), (11), and (12) with
the boundary conditions (2), (3), and (15) using the
standard shooting method of solving two-point
boundary-value problems.® For a given value ry, we
need four initial values: &(ry), m(ry), w(r,), and
w'(r,). From (11) it is obvious that we can choose §(rj)
arbitrarily. We take &(r;)=0. From (3) we have
m(ry) = % ry. Finally, it follows from (10a) that w(r;)
and w'(rj,) must satisfy the constraint

R2m—=0—=w)/rlw'+ (0 —w)w]|, =0.

To sum up we have only one free shooting parameter
w(ry) which satisfies |w(ry)| < 1. For a fixed value of
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rn we choose some w(r,) and propagate it numerically
trying to aim at X1 at infinity. For example, for r, =1,
if we take w(r,) a bit less than 1, say w(r,) =0.7, then
the solution diverges rapidly to If we take
w(ry) =0.6, then the solution reaches a minimum for
—1<w <0 and then diverges to +oo. It turns out that
there exists a value w;(r;) € (0.6,0.7) such that the
solution goes asymptotically to —1 [Fig. 1(a)l. In a
similar way we can find solutions with a greater number
of zeros, which, after oscillating in a region |w| <1,
tend asymptotically to * 1. Thus, for a given value of r,
we get a discrete family of asymptotically flat solutions,
labeled by n, the number of nodes of w. This structure is
very similar to that found by Bartnik and McKinnon for
globally regular solutions. However, notice that, in con-
trast to the regular case, we do not have a natural start-
ing value r,. Since EYM equations do not have the scal-
ing symmetry (remember that we have fixed the scale by
putting the YM coupling constant A=1), a priori we
should treat r, as the second shooting parameter. Lucki-
ly enough, it turns out that for every value of r, we get a
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similar discrete family of solutions. The initial value
w(ry) changes continuously with r,, indicating that
probably there exists a hidden symmetry which allows us
to transform solutions with different values of r, one into
another.

The behavior of solutions for r, =1 is shown in Fig. 1.
Near the event horizon the solutions are very close to the
Reissner-Nordstrom solution. To show this we define
after Ref. 1 the effective magnetic charge g2(r) by

e %0 —2m/r)=1—2M/r+g?%r?>.

Figure 1 shows that just outside the horizon g2(r)=1.
Further from the horizon we have a transition zone; the
magnetic charge slowly decays. When w reaches its
asymptotic value * 1, the charge drops to zero and the
solution approximates the Schwarzschild solution with
mass M.

Discussion.— We realize of course that the above nu-
merical construction gives only a strong evidence for the
existence of solutions. The analytical proof of existence
is obviously needed. Here, insight provided by numerical
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FIG. 1. Mass, effective charge, w, and § for the first five numerical solutions with the event horizon located at r, =1. The solu-
tions are indexed by n, the number of zeros of w. The precise values of the parameters are given in Table 1.
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TABLE I. Shooting initial value w,(ry), ADM mass M,,
and 8, (o) for the first five numerical solutions with the event
horizon located at r, =1 (n is the number of zeros of w).

n wn(ry) M, 8, (o)

1 0.632206952 0.937191 161 —0.548472096
2 0.345178112 0.993848856 —0.593180907
3 0.187579799 0.999437943 —0.590174478
4 0.102277 365 0.999949567 —0.587905574
5 0.055839881 0.999995498 —0.587110995

solutions should be helpful. In particular, nontrivial in-
formation about the solutions is probably hidden behind
some striking numerical coincidences. For example, we
do not understand why the ratio w, (ry)/w,+1(ry) is al-
most constant for every n.

There are two additional questions that are relevant
to whether the above solution is physical or not. The
first question is concerned with the fact that the
Schwarzschild coordinates we have used are pathological
at the horizon. Thus it may happen that the smooth
solution in r,r coordinates corresponds to one which in
well behaved coordinates has singularities. To show that
this does not happen for our solution we have checked
the behavior of metric functions and the YM field in
Kruskal-like coordinates and found that they are regular
everywhere.

Another important problem is the question of stability.
It is clear from the above construction that although lo-
cally our solutions depend continuously on initial data at
r =ry, they are not globally stable against a small change
of initial data. In other words, the Cauchy problem
(evolution in r with initial data at r =r;) for our equa-
tions has the global solution only for a discrete set of ini-
tial data. From the mathematical point of view, this in-
stability is nothing strange; in fact, it is quite typical for
elliptic eigenvalue problems. However, physically this
suggests that a balance between the attractive gravita-
tional force and the repulsive YM force is very fragile
and may be unstable in time. In particular, the solutions
found by Bartnik and McKinnon are not stable under

small time-dependent perturbations.'® We hope that the
presence of the horizon can stabilize the solutions. We
are currently working on this problem. The preliminary
analysis shows that for small time-dependent perturba-
tions there are no exponentially growing radial modes
with the correct behavior at the horizon. There is an ex-
citing possibility that the static colored black hole, if it
turns out to be stable, is the final state of the collapsed
Bartnik-McKinnon soliton star.

In conclusion, let us remark that colored black holes
may have interesting astrophysical applications but we
would not like to speculate about it before the question
of stability is settled positively.
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