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Correlation Exponents and the Metal-Insulator Transition in the One-Dimensional Hubbard Model
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The long-distance decay of correlation functions in the one-dimensional Hubbard model is determined
for arbitrary band filling and correlation strength, using the exact solution of Lieb and Wu. In particu-
lar, for either infinitely strong on-site repulsion U, or in the close proximity of half filling for any U,
spin-spin correlations decay like cos(2kfx)x 't'ln't'(x). For infinite U the results are generalized to
the case of nonzero nearest-neighbor interaction. The behavior of the frequency-dependent conductivity
is also discussed, in particular in the proximity of the metal-insulator transitions occurring for half and
quarter filling.

PACS numbers: 71.30.+h, 71.28.+d

A theoretical understanding of interacting fermion
systems in one dimension is important for a number of
reasons. On the one hand, in the physics of quasi-one-
dimensional organic conductors' or of conducting poly-
mers, interaction effects play a major role. On the oth-
er hand, one-dimensional models can be easier to under-

stand than their higher-dimensional versions, or even ex-
actly solvable, as is the case with the prototypical model
of correlated fermions, the Hubbard model. ' They
therefore can provide valuable information on the role of
correlation effects in higher dimensions, e.g. , on the
physics of correlated fermions in two dimensions, which
is thought to be at the origin of the many interesting
properties of high-temperature superconductors.

The theory of one-dimensional interacting fermions
has made progress along two somewhat separate lines:
(i) Perturbative renormalization-group calculations have
shown that different correlation functions [see, e.g. , Eqs.
(5) and (6) below] have long-range power-law behavior,
with interaction-dependent exponents. ' These ex-
ponents in turn determine a number of physical proper-
ties: temperature dependence of the NMR relaxation
rate or x-ray scattering intensities, effect of impuri-
ties, or possible low-temperature ordered states in sys-
tems of coupled chains. (ii) Specific lattice models like
the Hubbard model and its generalizations have been
studied numerically to obtain correlation functions' and
the energetics of ground and excited states. ' "

In the present paper, I shall describe a way to obtain
precise information about correlation exponents from en-
ergies alone without the explicit calculation of corre!a
tion functions The reasoning use. d is a straightforward
generalization of arguments due to Haldane' to the case
of spin- 2 fermions. I will illustrate the method using
the Hubbard model, where exact energies can be ob-
tained even in the thermodynamic limit. Even then the
eigenfunctions are so complicated that the direct calcula-
tion of correlation functions like (5) and (6) is hard even
for very small systems. '" The present calculation then
provides a rather detailed description of the crossover be-
tween weak and strong correlation and of the metal-

H, , =& dx II, + (t),p, )
2 2zK,

The phase fields are'
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Here p, (p) [cr, (p)] are the Fourier components of the
charge- [spin-] density operator for right- (r =+) and
left- (r = —) going fermions. Introducing the tota/ num-
ber operators (measured with respect to the ground
state) N„ for right- and left-going particles (r =+ ) of
spin s, the (charge and spin) number and current opera-
tors are

N, , =[(N+1+N 1) ~ (N+i+N i)]/J2,

1,,
= [(N+ 1

—N —
1 ) ~ (N+ i N i)]lJ2, —

where the upper and lower sign refer to charge and spin,
respectively.

The operators p, , and II, in (I) obey Bose-like commu-
tation relations: [p,,(x),II„(y)]=i8,„8(x—y), and con-

insulator transition occurring when the average particle
number per site n approaches unity. It will be seen that
the method can also give rather reliable results in cases
where only small finite systems can be solved exactly.

The low-energy, large-distance behavior of a one-
dimensional fermion system with spin-independent in-

teractions is described by the Hamiltonian '

H=H, +H +
z

dxcos(J8$ ) .
2g]

(2tra) ' "
Here a is a short-distance cutoff, gl is the backward-
scattering amplitude, and for v=p, o
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sequently, at least for g~ =0, (1) describes independent

long-wavelength oscillations of the charge and spin den-

sity, with linear dispersion relation co,,(k) =u, ,
I k I, and

the system is conducting. ' The only nontrivial interac-
tion effects in (1) come from the cosine term. However,
for repulsive interactions (gl )0), this term is renormal-
ized to zero in the long-wavelength limit, and at the fixed

point one has K* =1. The three remaining parameters
in (1) then completely determine the long-distance prop-
erties of the system, and, in particular, K~ determines the
long-distance decay of all the correlation functions of the
system. For example, the charge and spin-correlation
functions are' '

with the model-dependent constants A;, B; Sim. ilarly, K~
determines the singularity of the momentum distribution
function close to kF ..

nl, = —,
' —sgn(k —kF) I k —kF I'

and of the single-particle density of states N(ru) =
I

ni I',
with a =(K~+ I/K~ —2)/4. Note that for any K~&1 the
momentum distribution function and the density of
states have power-law singularities at the Fermi level,

quite unlike a standard Fermi liquid.
For the Hubbard model, K~ and u, can be determined

perturbatively, e.g. ,

Kp = 1
—UlzvF + (8)

where i. F =2t sin(xn/2) is the Fermi velocity. For larger

U, higher operators appear in the continuum Hamiltoni-
an (1). These operators are irrelevant, i.e., they renor-
malize to zero and do not qualitatively change the long-

distance properties, but they do lead to nontrivial correc-
tions to the coefficients u„K~. These corrections can be
treated order by order in perturbation theory. However,
this approach is obviously unpractical for large U, and

moreover, for sufficiently large U, perturbation theory
will almost certainly fail. To obtain the exponents for
arbitrary U a diA'erent approach is necessary. I note
three points: (i) In the small-U perturbative regime, in-

teractions renormalize to the weak-coupling fixed point

g~ =0, K* =1; (ii) the exact solution does not show

any singular behavior at nonzero U, i.e., large U and
small U are the same phase of the model, so that the
long-range behavior even of the large-U case is deter-
mined by the fixed point g~ =0; (iii) the gradient of the
phase field P~ is proportional to the particle density, and,
in particular, a constant slope of p~ represents a change
of total particle number. Consequently, the coefficient

u~/K~ in Eq. (2) is proportional to the variation of the

(n(x)n(0)) =K~/(zx) +A
~
cos(2kFx)x 'ln / (x)

+A2cos(4krx)x (5)

(S(x) S(0))= I/(zx) +B1cos(2kFx)x 'ln' (x),
(6)

ground-state energy Eo with particle number '

O'Ep(n) n u,
L Qpg2 2 Kp

This equation now allows the direct determination of K~:
Ep (n ) can be obtained solving (numerically) Lich and
Wu's integral equation, and u~ is obtained from the
low-momentum limit of the charge-oscillation excita-
tions, which can be identified with what Coll calls
(somewhat misleadingly) "particle-hole excitations. "
The resulting U dependence of K~ is shown in Fig. 1(a)
for diA'erent particle densities. For small U one finds in

all cases agreement with the perturbative expression, Eq.
(8). The large-U limit, K~ Y', is more apparent in

Fig. 1(b), where K~ is plotted as a function of particle
density at constant U. The limiting behavior for large U
can be understood by noting that for U =~ the charge
dynamics of the system can be described by noninteract-
ing spinless fermions (the hard-core constraint is then
satisfied by the Pauli principle) with kF replaced by 2kF.
Consequently, one finds a contribution proportional to
cos(4kFx)x in the density-density correlation func-

tion, which from Eq. (5) implies K~= —,
' . One then finds

an asymptotic decay like cos(2kFx)x 'i In'/ (x) for the

spin-spin correlations, Eq. (6), and an exponent a = —,
'

in

the momentum distribution function. ' Ogata and
Shiba's numerical results' are quite close to the exact
values.

As is apparent from Fig. 1(b), the strong-coupling
value K~= —,

' is also reached in the limits n 0, 1 for
any positive U. For n 0 this behavior is easily under-
stood: The eA'ective interaction parameter is U/|. F, but vF

goes to zero in the low-density limit (corresponding to
the diverging density of states). The limit n 1 is more
subtle: In this case nearly every site is singly occupied,

n
u V

FIG. 1. The correlation exponent IC, (a) as a function of the
effective interaction parameter U/vp for different values of the
band filling (n =0.1, 0.3, 0.5, 0.7, and 0.9 for the top to bottom
curves) and (b) as a function of the band filling n for diff'erent

values of U (U/r =1, 2, 4, 8, and 16 for the top to bottom
curves). Note the rapid variation near n=1 for small U. The
circles are results obtained for a sixteen-site chain.
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with a very low density of holes. The only important in-

teraction then is the short-range repulsion between holes,
which can be approximated by treating the holes as a
gas of spinless noninteracting fermions. Using (9), one

then again finds K~= —,
'

.

The exact so1ution of Lieb and Wu can also be com-
bined with the long-wavelength efI'ective Hamiltonian

(1) to obtain some information on the frequency-
dependent conductivity a(ru). On the one hand, the to-
tal oscillator strength is proportional to the kinetic ener-

gy

0;„= cr(ru)dru = —rr&Hk;„)IL . (10)
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FIG. 2. Variation of the relative weight of the dc peak in

the total conductivity oscillator strength as a function of the
band filling n for different values of U: U/r =1 (solid line), 4
(dashed line), 16 (dash-dotted line), 64 (dotted line), and 256
(dash-double-dotted line).

On the other hand, from Eq. (1) one obtains a contribu-
tion croB(ru) to the conductivity, with rro =2u~K~. Conse-

quently, the relative weight of the dc peak in the total
conductivity can be obtained and is plotted in Fig. 2. As

expected, far from half filling, all the weight in ot, t is in

the dc peak. For exactly half filling the dc conductivity
vanishes, due to the existence of a gap for charge excita-
tions 6, created by umklapp scattering, and all the
weight is at co & 5, . Figure 2 then shows that as n 1,
umklapp scattering progressively transfers weight from
zero to high frequency. The crossover is very sharp for
small or large U, but rather smooth in intermediate cases
(U/t = 16). This nonmonotonic behavior as a function
of U can be understood noting that initially with increas-

ing U umklapp scattering plays an increasingly impor-
tant role. Beyond U/r = 16, however, the spinless-
fermion picture becomes more and more appropria~:e,
and at U =~ one again has all the weight in the dc peak.
The linear vanishing of oo as n 1 implies a linear vari-
ation of the effective carrier density with "doping. "

For more complicated models, e.g. , the "extended

Hubbard model,
"

H= —t g (a;,a,, +a~', a;, )+Urn;ln;1+ Vgn;n~, (11)
(f,j),s i (ij)

exact eigenvalues cannot be obtained in the thermo-
dynamic limit. The parameters in Eq. (9) can, however,
be calculated reliably for finite systems, and this gives
rather good results, as can be seen Fig. 1(b): The circles
represent results from the solution of a chain of sixteen
sites (with V=O), in excellent agreement with the ther-
modynamic limit over the whole range of parameters. I
thus expect that reliable estimates of K~ can be obtained
from finite-size diagonalization also for models more
complicated than the Hubbard model.

Exact exponents can be obtained for the model (11) in

the limit U ~: Then one has effectively spinless fer-
mions (with kF 2kF) with nearest-neighbor interac-
tion, a model which can be exactly solved using the
Jordan-Wigner transformation into the XXZ spin chain.
In particular, the 4kF component of (5) is related to the
correlation function of S:. From the known results one
obtains, for a quarter-filled band (n = i ), K~ = I/[2
+(4/n)sin '(v)], up=rrt(1 —v') '~'/cos '(v), with
v = V/ 2

~
t

~
. Now K~ ( —,

'
is possible. For v & I the sys-

tem is in a dimerized insulating state. Approaching the
insulating state from t. &1 both E~ and u~ remain finite,

jumps to zero at t =1. For n+ — the par~meters

u~, K~ can be obtained from numerical results. ' Quite
generally, one has K~& —,', but K~= —,

' for n 0, 1, in-

dependent of v. On the other hand, u~ 0 as n 2 for
t. & 1; i.e., in that case the weight of the dc conductivity
goes to zero continuously, the point (v, n) = (1, —,

' ) is thus

highly singular. The same type of singularity also occurs
at U 0, n 1 in the Hubbard model. Also note that the
singularities in u~ and K~ at v = —I (attractive interac-
tion) represent a point of phase separation.

The present results place some constraints on the way
experimental systems can be modeled. For example, in

the quasi-one-dimensional organic compound tetrathia-
fulvalene tetracyanoquinodimethane (TTF-TCNQ), one
observes strong diffuse x-ray scattering at 4kF. From
Eq. (5) one then concludes that K~( —,', and therefore
the Hubbard model alone cannot be sufficient to describe
correlation eA'ects in this compound. The experimentally
determined exponents in a number of other com-
pounds also imply K~ & 2,. i.e., finite-range interac-
tions seem to be rather important in many cases.
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