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Solitary Waves Generated by Subcritical Instabilities in Dissipative Systems
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We show that stable localized waves can be generated in the vicinity of an inverted Hopf bifurcation.
We compute the size of the localized wave envelope perturbatively in the case of slightly dissipative sys-
tems. The size selection traces back to the broken scale invariance by the dissipative terms. This mecha-
nism is a possible explanation for the localized structures, widely observed in various hydrodynamic flows

in dissipative systems driven far from equilibrium.

PACS numbers: 47.20.Ky, 03.40.Kf

Localized structures are widely observed in systems
far from equilibrium. Well-known examples are the lo-
cal regions of turbulent motion surrounded by laminar
flow, which develop in many open-flow experiments (e.g.,
pipe flow, channel flow, boundary layers).! More recent-
ly, spatially localized standing surface waves have been
observed on a horizontal layer of fluid submitted to verti-
cal vibrations,? and convection in binary-fluid mixtures
displayed localized traveling waves.3™> In all cases, the
possible origin of localized structures lies in the existence
of a subcritical instability, which implies that two
different homogeneous stable states coexiSt in an interval
range of the control parameter. The simplest spatial
nonuniformity consists of an interface between the two
stable states. A similar situation occurs in first-order
phase transitions, for instance, when droplets of liquid
nucleate in a supersaturated vapor. In phase transitions,
the droplets are always unstable; they either shrink or
expand. In the instability problem, a “‘droplet” consists
of a region where the system is in the bifurcated state,
surrounded by the basic state. When there exists a
Lyapunov functional, i.e., a “free energy” to minimize,
the lowest-energy state is preferred and the dropletlike
structure is unstable, just as in the phase-transition prob-
lem. We have shown recently by direct numerical in-
tegration of a model equation that nonvariational effects,
i.e., the nonexistence of a Lyapunov functional, can sta-
bilize dropletlike structures in the vicinity of a subcritical
instability, and pointed out the similarity with solitons in
conservative systems.® We show in this Letter that these
localized structures can be computed perturbatively in
slightly dissipative systems, and that the leading-order
effect of the dissipative terms is just to select the size of
the structure among a family of scale-invariant solitons.
Although this selection can, in principle, occur in the vi-
cinity of a supercritical bifurcation, the stability of the
localized structure requires a subcritical bifurcation.

We consider a subcritical Hopf bifurcation, with a
complex amplitude W(x,r) governed by the Ginzburg-

282

Landau equation,
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where u is the distance from criticality, a is positive, and
B, v, and & are real. We have simplified the imaginary
coefficients by appropriate scalings of W and space.
Small perturbations are amplified when u > 0; the bifur-
cation is supercritical if 8 <0 and subcritical for 8> 0;
in the subcritical case, y <O is required for stability. Let
us also recall that the Ginzburg-Landau equation with
only real coefficients can be put in a variational form.
This is not true for complex coefficients; i.e., the right-
hand side of Eq. (1) is not proportional to the derivative
of a functional with respect to # (the complex conjugate
of W). Equation (1) can be derived for two-dimensional
disturbances of the plane Poiseuille flow,” where W rep-
resents the complex amplitude of Tollmien-Schlichting
waves. The traveling waves observed in binary-fluid-
mixtures convection also take place via a subcritical
Hopf bifurcation, but the right- and left-traveling waves
W _expli(wt —kx)] and W4 expli(wt + kx)] must both
be considered, and the amplitude equations for W _ and
W+ are coupled. We have numerically observed local-
ized stationary solutions in both cases,® but for simplicity
we will consider here the simplest model (1).

We have numerically integrated Eq. (1) with a pseu-
dospectral method involving 512 complex modes and
periodic boundary conditions on the interval [0,L]. A
typical pulselike solution is shown in Fig. 1. It corre-
sponds to a small region in the bifurcated state surround-
ed by the basic state. Notice that the amplitude of the
pulse is strongly localized while its phase varies almost
linearly in space. Solutions with a similar shape have
been observed on large interval ranges of the constants
a,p. Their typical size does not depend on the box
length L which has been varied from 4x to 30x. The
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FIG. 1. 1D pulselike solution in the case u=—0.24,

a=0.15, f=2.4, y=—1.65, and § =2; interval length, L =20.
(a) Amplitude profile |W(x)|. (b) Phase profile ¢(x)
=argW(x). Although the coefficients of the dissipative terms
are not small, the amplitude predicted by Eq. (7) agrees within
5% with the numerical result; however, the dissipative pulse
size is about 65% the one of the corresponding soliton.

pulses exist for values of y within a finite band. They
are obtained with a great variety of initial conditions.
For instance, a phase-unstable homogeneous state
| W | %0 often evolves to a pulselike solution.” Station-
ary localized pulses are thus structurally stable solutions
of Eq. (1).

The shape of the pulse amplitude reminds one of the
pulselike soliton of the nonlinear Schrodinger equation,
which corresponds to y=a=g=y=4§=0 in Eq. (1).
We thus look for a perturbative approach with u,a,8,7,8
of order €< 1, and write Eq. (1) in the form

w _. a'w
ot ax?

+2 | WIPW+eR(W) . )

When R =0 Eq. (2) has a well-known family of one-
soliton solutions, Wo(x,t) =ro(x)expl —iOo(¢)], with
ro(x) =2A¢sech(2A¢x) and ©(1) = —4Adt+¥,. The
existence of this family traces back to the invariance of
the nonlinear Schriodinger equation under rotations in
the complex plane, W— Wexp(if), and dilatations
W— AW, x— Ax, and t — A%t

Writing
W(x,t) =lro(x)+w(x,t)]lexpl —i©(1)],

we get from Eq. (2) the linearized evolution equation for
the perturbation w,

dw=Lw+eR(W)exp(i©y) , 3)

with Lw=i[—4A¢w+9,,w+2r$(2w+w)]. The phase
and dilatation invariances imply the existence of neutral
eigenmodes for the operator L. One can check that they
are, respectively, irg and 9ro/dA¢. Indeed, we have

L(irg) =0, L(8r¢/dA¢) =8Ao(irg) . 4)

Equations (4) represent a codimension-two singularity. '°
In other words, they show that the size of the pulse and
its phase are coupled (see the equations given in Ref.
11).

When R0 we thus look for slowly varying solitons in
the form

W(x,t) =2A(t)sech[2A(¢)x]expl —i©(1)] . ()

The temporal evolution of a soliton under the action of
a perturbation is a well-known problem of soliton theory,
and can be solved with the inverse-scattering method. "'
The temporal evolution of A(z) can be found in a simpler
way here: Multiplying Eq. (1) by W and integrating on
space leads to the evolution equation for [ Zedx | W |2,

1.4
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(6)

We get from Egs. (5) and (6) the evolution equation
for the soliton size A,

FdA/dt=pA+ $ (—a+28)A%+ 12 yAS. @)

If 28> a, Eq. (7) has two nonzero solutions A+ for
us < p <0, with g, =5(—a+28)%/96y. Only the larger
Ay is stable, and gives the size of the pulse. The dissipa-
tive terms of Eq. (1) thus stabilize one of the soliton
solutions (5) and select its size by breaking the scale in-
variance associated with the conservative problem. Note
that this selection mechanism among the family of solu-
tions (5) by the dissipative terms of Eq. (1) also occurs
when Eq. (1) represents a supercritical bifurcation
(B <0). However, the existence of a stationary solution
A in Eq. (7) then requires u > 0, and the W =0 solution
is no more stable. Thus, the stable pulselike solutions
described here require the existence of a subcritical bi-
furcation. Then, in the interval range of u where two
stable homogeneous solutions of Eq. (1) exist, u. <u
<0, with u.=p%/4y, there exists an order e interval,
us <pu <0, where a pulselike solution of size
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A+(u,a,B,y) is selected. (Note that u. < u; <0 because
2>a>0.)

The above mechanism also applies in the case of local-
ized surface waves observed on a horizontal layer of fluid
submitted to vertical vibrations.? If one considers only
standing waves, the wave’s complex amplitude obeys the
equation '?

ow

. —
5 ( k+1v)W+yW+ta

T+2i|W|2W, (®)
x
where A is the dissipation, A > 0, v is the frequency de-
tuning from parametric resonance, u is proportional to
the external forcing, and the imaginary coefficients have
been simplified by appropriate scalings of space and W.
Equation (8) has exact pulselike solutions;'? it is, howev-
er, interesting to note that the perturbative method used
above shows again that two solitary waves of the form
given by Eq. (5) are selected by the dissipative terms
when the bifurcation described by Eq. (8) is subcritical,
i.e., when v < 0. We find

dA/dt =2A(—A+pcos2O) ,
dO/dt = —4A*— v —pusin20 .

The phase © + of the stationary solutions is quenched by
the external forcing, ©+ =+ + cos "'(A/u), and the
size A+ of the wave envelope is given by 4A% = —v
+ (u2—212) "2, As above, only the pulse of larger size is
stable.

We have thus described a simple mecshanism to ex-
plain the existence of stable localized structures in the vi-
cinity of subcritical bifurcations. Other examples with
applications to various experimental situations can be
easily considered, and in particular the stability of mul-
tipulse solutions, observed in Eq. (1) can be investigated.
Let us recall that these localized structures are unstable
when a Lyapunov functional exists,® or marginally stable
in the conservative case, i.e., when the coefficients of Eq.
(1) are pure imaginary. The stabilization mechanism is
a nonvariational effect that traces back to the coupling
between the amplitude and the phase of the wave’s com-
plex amplitude. As reported in Ref. 6, this stabilization
mechanism also works for two-dimensional fields
W(x,y,t), solutions of Eq. (1) where the diffusion term
is the two-dimensional Laplacian; although in the non-
linear Schrodinger equation limit considered here, these
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two-dimensional pulselike solutions are known to be
strongly unstable.
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