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Conduction in Curvilinear Constrictions: Generalization of the Landauer Formula
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We have generalized the multichannel Landauer formula to the case of leads with a variable cross sec-
tion. Local equilibrium is achieved as a result of widening the constriction, rather than by the usual in-

troduction of reservoirs and inelastic scattering. The generalized formula provides an explicit depen-
dence of the conductance on the position of the voltage probes. We show that the previous Landauer
formulas are obtained as limiting cases. Application of this formula to ballistic transport predicts new

structure for the conductance.

PACS numbers: 72. 10.Bg, 73.40.Cg

The scattering approach to electric transport in meso-
scopic systems, which was pioneered by Landauer, ' has
been very successful, most notably in the treatment of
strictly one-dimensional conductance. However, general-
izations of the Landauer formula to the multichannel
case have been the subject of significant controversy,
and several different formulas have been proposed. The
diverse treatments of the multichannel conductance
have all employed the same geometry which seemed to
be inherent to the scattering approach. The scattering
region was always embedded between long perfect leads
of constant cross section, the purpose of the introduction
of the leads being the definition of the conductance chan-
nels. Once the channels are specified, the scattering ma-
trix can be given in terms of transmission and reflection
probabilities of various channels.

In addition to the scattering matrix, it is also neces-
sary to specify the channel population. The most natural
population is achieved by means of reservoirs attached
to the ends of the leads, which are kept at different
chemical potentials. Equilibrium population in the reser-
voirs is maintained by the introduction (only inside the
reservoirs) of some inelastic process. Two different con-
ductance formulas can thus be obtained:

aperture is very different from the geometry assumed in

the derivation of the standard conductance formulas.
The walls of the conducting regions are far from being
straight. Moreover, the quality of conductance quantiza-
tion actually improves at low temperatures when the in-

elastic mean free path exceeds the size of the sample,
suggesting that the importance of the process of equili-
bration has been somewhat overestimated.

In this Letter, we apply the Landauer approach to
electron transport in wires with a variable cross section.
We derive a generalized conductance formula which con-
tains both (I) and (2) as limiting cases and permits a
smooth crossover between them when the voltage probes
are moved from the narrow to the wide parts of the
leads. We show that the wide regions serve as effective
reservoirs even in the absence of inelastic scattering.
Furthermore, we show that there is no need for separate
treatment of the contact resistance.

We start with a simple observation that the free
Schrodinger equation can be separated in several coordi-
nate systems' in addition to the usual rectangular coor-
dinates. If the boundaries of the leads coincide with

lines (surfaces) q~ =const, in one of these systems,
quasi-one-dimensional conduction channels can be
defined. A wave incident from the mth left-hand-side
channel has the following form:

which is valid if the voltage probes are located deep in-

side the reservoirs, and the formula of Buttiker et al. ,
'

6 = tr(it ')e 2&v„, '

g(I+R„,—T„,)v„, '

y., (g)g., (e)+Jr..., y.*, (g)g (e)

in the left-hand-side lead, and

g i..., q., (g)g., (B)

(3a)

(3b)

which is valid if the voltage is measured inside the leads.
Since the reservoirs and the leads have very diA'erent

properties, the matching between them is highly nontrivi-
al and a contact resistance is expected ' to arise. This
additional resistance is not included in either of the two
above conductance formulas and must be treated sepa-
rately.

The shape of the constrictions used in recent experi-
ments ' studying electron transport through a narrow

in the right-hand-side lead. We have denoted the longi-
tudinal coordinate by g and the transverse coordinate by
0. In three-dimensional systems 0 denotes a pair of
transverse coordinates.

To derive the conductance, we follow the same ap-
proach that led Biittiker et al. to Eq. (2). We assume
that all the states incident from the right are filled up to
energy E2, whereas the states incident from the left are
filled up to El =E2+hE. The total current is then given
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by

I = &E tr(rt '),
zh

(a)

where we have allowed spin degeneracy.
Since our boundary conditions are asymmetric, the

carrier distribution cannot be described by a simple
chemical potential. We can, however, introduce an
eA'ective chemical potential p(g), defined by the condi-
tion that the equilibrium carrier density implied by p(g)
is equal to the actual density p(g). The potential
difference eV between voltage probes located at g~ and

g~, is given by eV=p(g„) —p(g„). The total carrier
density can be decomposed into a density of particles
that came from the right and the density that came from
the left, p(g) =pg(g)+pl (g). Expressing the voltage in

terms of pi (g), we find

(b)

3
8=v 77

=0

BpL (&„)/BE BpL (&„)/—BE

Bp(&p)/BE
(5)

x =a sinhgcos8,

y=acoshgsin8, —,
' z(8( -'z, (7)

where 2a is the distance between the foci. In these coor-
dinates, the Schrodinger equation inside the leads
separates into

d2~ + (b 2 —
Q

2 sin~8)g(8) =0
de2

d2 ~+(I ' —b'+a'sinh'g)y(g) =O
d

(sa)

(8b)

where h =kfa. Using the transverse equation (8a) and
the boundary conditions g(81) -g(8q) =0 one can deter-

where we have assumed for simplicity that Bp(g~)/BE
=Bp(g~)/BE. Combining (4) and (5) we finally obtain
our central result

ap(g, )/BEG= tr tt
Bp, (g„)/BE Bp, (g„—)/BE

In the case of rectangular leads, this result reduces to
Eq. (2). Much more interesting, however, is the case of
leads with variable cross section —wide in the asymptotic
regions and narrow in the middle. We will discuss in de-
tail two-dimensional leads bounded by a pair of confocal
hyperbolas [Fig. 1(a)]. This geometry is of particular
importance since it closely approximates the shape of
constrictions used in actual experiments. Elliptic coor-
dinates [Fig. 1(b)] are defined by

FIG. l. (a) The geometry for leads with a variable cross
section. The leads are formed by a pair of confocal hyperbolas.
(b) Elliptic coordinate system.

mine the set of transverse functions g„,(8) together with
the corresponding values b„, of the separation constant.
The asymptotic form of the longitudinal wave function

p„, (g) in the rnth channel is given by

y., (&)— 1

JI „,(g)
exp +' h„, (g)dg

where h„, (g) =It '- —b„', +h sinh g. The classical turning
point g„, of the mth channel is determined by the condi-
tion it„,(g„, ) =0. Although the total number of channels
is infinite, only a finite number of channels can have a
nonzero transmission probability. According to Eq. (6),
the measured conductance depends on g~ and g~

—the
position of the voltage probes. Consider first the case of
0 & —

g~, g„&&1, i.e., voltage probes located in the nar-
row region where we have N propagating channels. If
we also assume that i 81 —82' «1, the narrow region
will be long enough so that evanescent modes can be
neglected. The wave functions of the propagating chan-
nels are given by (9), where we can set h„, =h —b
m=1, . . . , N. The wave functions are then just plane
waves and Eq. (6) coincides with Eq. (2).

Consider now the opposite limit of voltage probes lo-
cated in the asymptotic region ((~, i g~ i )) 1). Here we
can use for the transmitted channels the asymptotic form
(9) with h„, (g) =he i'i. In two dimensions, Bp/BE
=m*/2zh (m* is the carrier mass), and (6) reduces to

G = tr(rr ')
1
—[2tr(rr ')/kFa

i 8i —8~ i ](e "+e "' )
(1o)

As the probes are moved closer to the wide regions, the measured conductance approaches the standard result (1) which

is expected when the voltage is measured between reservoirs. In terms of the efrective chemical potential, the denomi-
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nator of (10) can be written as

E2 —Et E) —E2

The carrier population in the right (left) lead can be
thought of as a completely filled up to Ei (E~) Fermi
distribution plus current-carrying excitations (electrons
in the right lead, holes in the left lead). From the
definitions of E~, Ei and p((), it follows that the
diff'erence between p(g) and E~ (Eq) is proportional to
the density of excitations. Comparing (10) and (11), we

see that as a result of the spreading of the current flow,
this density decreases as the leads widen. If the voltage
probes are located in sufficiently wide regions, the
influence of nonequilibrium electrons on the measured
voltage is negligible and Eq. (1) is recovered. ''

In our treatment, we have assumed a certain popula-
tion of the incoming channels. Accumulating excitations
can change this population and affect the conductance.
This problem can be avoided by making the measure-
ment during a sufliciently short period of time, before the
population is changed significantly.

Alternatively, this extra energy can be dissipated by
some inelastic process The. corrections to the conduc-
tance due to scattering (elastic or inelastic) in the leads
becomes smaller as the mean free path (mfp) increases.
In the particular geometry we are considering, AG-I
and by increasing the mfp, the influence of the additional
scattering in the leads can be made arbitrarily small.
The fact that the scattering in the leads weakly aff'ects

the conductance is only correct for leads which widen

asymptotically. Previous derivations of the conductance
formula were all restricted to the case of leads with a
constant cross section, in which scattering in the leads
usually modifies the conductance. In order to overcome
this problem, the concept of reservoirs was introduced. '

The most important property of widening the leads is
that they serve as natural reservoirs.

Dissipation of the energy of the external electric field

proceeds in two steps. First, the energy is transferred
from the field to the carriers. This process is, in princi-
ple, reversible and does not involve an increase in entro-

py. In our treatment, we have discussed only this first
step. The generalized Landauer formula (6) gives there-
fore the amount of energy absorbed by the carriers be-
tween g~ and g~, that is, P =I /G(g~, gp ).

To demonstrate the applicability of the generalized
formula (6), we consider transport through a constric-
tion bounded by a pair of confocal hyperbolas (inset in

Fig. 2). This geometry is of particular interest from the
experimental point of view since it closely approximates
the shape of ballistic point contacts. It was demonstrat-
ed experimentally ' that the conductance pattern con-
sists of smoothly connected quantized plateaus. This
phenomenon was treated theoretically by several workers

by calculating the transmission probabilities either for
sharp or smoothly curved ' constrictions within the

i

b2
i

bq

FG

FIG. 2. G (in units of e-'/zh) as a function of kFa. The
solid line corresponds to voltage probes in the wide regions.
The dashed line corresponds to probes in the intermediate re-
gion ((~ —1).

framework of the formula G =(e /trh)tr(tt ). We now
calculate 6 for two different positions of the probes by
using the generalized Landauer formula (6). In elliptic
coordinates, the Schrodinger equation separates into
transverse and longitudinal equations (8a) and (8b).
From Eq. (8b) we calculate the transmission probabili-
ties

~t„,„, ~
=6„,„, 1+exp—(b„, —/t ) (12)

In Fig. 2, we plot the conductance as a function of kFa
(a is half the distance between the foci) for two diff'erent

positions of the probes. When the probes are in the wide
regions (solid curve), the conductance exhibits quantized
plateaus. The quantization is more pronounced for a
gradual opening of the constriction (small

~ 8~
—

82~ ).
When the probes move towards the narrow region, the
conductance is no longer given by Eq. (1), but rather by
the generalized formula (6). The conductance for an in-
termediate position of the probes is shown by a dashed
line in Fig. 2. The quantized pattern is preserved, but
the values of the conductance on the plateaus are larger
than me /trh. The second interesting feature is the non-
monotonic behavior of the conductance due to the ap-
pearance of a dip at the end of the plateaus. Near the
transition regime, the appearance of a new mode causes
an increase in local voltage and a drop in the conduc-
tance.

In the derivation of Eq. (6), we assumed that the volt-

age probes are noninvasive. As recently discussed
by Landauer, this can be achieved experimentally.
Nonideal probes affect the measurement in two ways:
they introduce additional scattering and they extract
current from the system. The second problem can be
handled by the multiprobe approach of Buttiker. ' The
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scattering from the probes can aAect measurements of
the local voltages in the narrow region of the constric-
tion. As the probes are moved into the wide region, the
influence of scattering is diminished.

The exact solution of the Schrodinger equation in hy-
perbolic constrictions can be compared with the adiabat-
ic approximation' ' which was recently used to explain
the quantization of conductance in ballistic point con-
tacts. For short constrictions (L«VRd), the adiabatic
approximation indeed gives the correct transmission
probabilities. ' For I. & VRd, the adiabatic approxima-
tion predicts strong mode mixing and a breakdown of
separability of the Schrodinger equation. Since the
Schrodinger equation is separable in elliptic coordinates,
the condition I (VRd must be interpreted as a criterion
for the validity of the adiabatic approximation.

In summary, we have derived a generalized Landauer
conductance formula, which is valid also for wires with a
variable cross section. We have shown that this
geometry removes the need to introduce reservoirs and
inelastic scattering. Moreover, the problem of contact
resistance is avoided. We have applied our formula to
ballistic transport and predicted new dips in the quan-
tized plateaus.
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